วารสารวิจัยสหวิทยาการไทย Journal of Thai Interdisciplinary Research

Volume 11, Number 2, Pages 8 - 12

Fixed point theorems for graph preserving multivalued mappings in complete metric spaces with graph

Nathapon Udomlertsakul and Suthep Suantai*

Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai 52000, Thailand

Abstract

In this paper, we introduce a new type of graph-preserving multivalued mappings in a complete metric space endowed with a directed graph and prove some fixed point theorems under some contractive conditions related to a Reich type contraction. We also give some examples supporting our main results. The main results obtained in the paper extend and generalize many results in the literature.

Keywords: Fixed point, complete metric space, multivalued mapping

บทคัดย่อ

ในการวิจัยนี้ เราได้แนะนำการส่งหลายค่าที่รักษากราฟในปริภูมิเมตริกบริบูรณ์พร้อมด้วยกราฟที่ระบุทิศทาง และได้พิสูจน์ ทฤษฎีบทจุดตรึงของการส่งดังกล่าวภายใต้เงื่อนไขการหดตัวบางอย่าง นอกจากนั้นยังได้ให้ตัวอย่างเพื่อสนับสนุนผลลัพธ์หลักที่ ได้ศึกษา ผลลัพธ์ที่ได้จากงานวิจัยนี้ ขยายผลลัพธ์อื่น ๆ จำนวนมากตามเอกสารอ้างอิง

คำสำคัญ: จุดตรึง, ปริภูมิเมตริกบริบูรณ์, การส่งหลายค่า

1. Introduction

Fixed point theory of multivalued mappings plays an important role in science and applied science such as Physics and Economics.

Let (X, d) be a metric space, we let P(X) be a power set of X, $P_b(X)$ the set of all nonempty bounded subsets of X, $P_{cb}(X)$ the set of all nonempty closed bounded subsets of X, $P_{cp}(X)$ the set of all nonempty compact subsets of X. If $T: X \longrightarrow P(X)$ is a multivalued mapping, then we will said that x is a fixed point of T if $x \in Tx$. The set $Fix(T) := \{x \in X \mid x \in Tx\}$ is called the fixed point set of T and $SFix(T) := \{x \in X \mid \{x\} = Tx\}$ is called the strict fixed point set of T.

Let A and B be subsets of X, the Hausdorff distance of A and B, denoted by D(A, B), is defined by

$$D(A,B) = \max\left\{\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)\right\}$$

and the function $\delta(A,B)$ is defined by

$$\delta(A,B) = \sup_{a \in A, b \in B} d(a,b).$$

For $x \in X$ and $A \subseteq X$, the distance between set A and point x is defined by $d(x, A) = \inf_{x \in A} d(x, a)$.

The first well known fixed point theorem for multivalued mappings was established by Nadler in 1969 [1].

Theorem 1.1. Let (X,d) be a complete metric space and let T be a mapping from X into $P_{cb}(X)$. Assume that there exists $k \in [0,1)$ such that

$$D(Tx,Ty) \le kd(x,y), \ \forall x,y \in X.$$

Then there exists $z \in X$ such that $z \in Tz$.

The Nadler's fixed point theorem has been extended and modified in many directions. In 2008, Jachymski [2] introduced the concept of Gcontraction in complete metric spaces endowed with graph.

^{*}Corresponding author; e-mail: suthep.s@cmu.ac.th

Definition 1.2 ([2]). Let (X, d) be a metric space and let G = (V(G), E(G)) be a directed graph such that V(G) = X and E(G) contains all loops, *i.e.*, $\{(x, x) : x \in X\} \subseteq E(G)$. We say that a mapping $f : X \longrightarrow X$ is a G-contraction if f preserves edges of G, *i.e.*,

$$x, y \in X, \ (x, y) \in E(G) \ \Rightarrow (f(x), f(y)) \in E(G)$$

and there exists $\alpha \in (0,1)$ such that

$$x, y \in X, (x, y) \in E(G) \Rightarrow$$

 $d(f(x), f(y)) \le \alpha d(x, y).$

Jachymski [2] showed that under the condition on (X, d, G), *G*-contraction, $f : X \longrightarrow X$ has fixed point if and only if $X_f := \{x \in X \mid (x, f(x)) \in E(G)\}$ is nonempty. The mapping *f* preserving edge is called a *graph preserving mapping*. Beg *et al.* [5] introduced the concept of *G*-contraction for multivalued mapping $T : X \longrightarrow P_{cb}(X)$ and proved some fixed point theorems.

Definition 1.3 ([5]). Let $T : X \longrightarrow P_{cb}(X)$ be multivalued mapping. This mapping is said to be a *G*-contraction if there exists $k \in (0, 1)$ such that

$$D(Tx, Ty) \le kd(x, y), \ \forall (x, y) \in E(G)$$

and if $u \in Tx$ and $v \in Ty$ satisfy that

$$d(u, v) \le kd(x, y) + \alpha$$
, for each $\alpha > 0$,

then $(u, v) \in E(G)$.

They showed that if (X, d) is complete metric space and (X, d, G) has preserving property, then a G-contraction mapping $T: X \longrightarrow P_{cp}(X)$ has fixed point if and only if $X_f := \{x \in X \mid (x, y) \in E(G) \}$ for some $y \in Tx\}$ is nonempty.

Throughout this paper, we use \mathbb{R}^+_0 to denote the set of all nonnegative real numbers.

Theorem 1.4 (Chifu *et al.* [5]). Let (X, d) be a complete metric space and G be a directed graph on X such that (X, d, G) satisfies the following property (P):

$$\forall \{x_n\} \subseteq X \text{ with } x_n \longrightarrow x, \exists \text{ subsequence } \{x_{k_n}\}$$

of $\{x_n\}$ such that $(x_{k_n}, x) \in E(G).$

Let $T: X \to P_b(X)$ be a multivalued mapping which has the following properties:

- (i) there exist $a, b, c \in \mathbb{R}_0^+$ with $b \neq 0$ and a+b+c < 1 such that $\delta(Tx, Ty) \le ad(x, y) + b\delta(x, Tx) + c\delta(y, Ty), \forall (x, y) \in E(G);$
- (ii) for each $x \in X$, the set $\overline{X}_T(x) := \{y \in Tx : (x,y) \in E(G) \text{ and } \delta(x,Tx) \leq qd(x,y) \text{ for some } q \in]1, \frac{1-a-c}{b}[\}$ is nonempty.

Then we have

(a)
$$Fix(T) = SFix(T) \neq \emptyset$$

(b) if we additionally suppose that x^* , $y^* \in Fix(T) \Rightarrow (x^*, y^*) \in E(G)$, then $Fix(T) = SFix(T) = \{x^*\}$.

In this paper, we modify some conditions of above theorem of Chifu *et al.* to obtain some fixed point theorems for the new type of multivalued mappings in complete metric space with graph.

2. Preliminaries

Let X, Y be two sets and $T: X \longrightarrow P(Y)$. For $M \subseteq X$, we define $T(M) = \bigcup_{x \in M} T(x)$.

Definition 2.1 (Continuity). Let X, Y be topological spaces and $T: X \longrightarrow P(Y)$ a multivalued mapping.

- (1) T is called upper semi-continuous, if for every $x \in X$ and every open set V in Y with $Tx \subseteq V$, there exists a neighborhood U(x) of x such that $T(U(x)) \subseteq V$.
- (2) T is called *lower semi-continuous*, if for every x ∈ X, y ∈ Tx and every neighborhood V(y) of y, there exists a neighborhood U(x) of x such that

$$Tu \cap V(y) \neq \emptyset, \ u \in U(x).$$

(3) *T* is called *continuous* if it is both upper semicontinuous and lower semi-continuous.

The following result is well known.

Lemma 2.2. Let (X, d) be a metric space and $T : X \longrightarrow P_{cp}(X)$ is continuous. If $x_n \longrightarrow x$, then $T(x_n) \longrightarrow T(x)$ under the Hausdorff distance.

3. Fixed point theorems

We start with giving the graph preserving property for multivalued mapping.

Graph preserving property: Let *G* be a directed graph on *X*. A mapping $T : X \longrightarrow P(X)$ is said to have graph preserving property, if for each $x, y \in X$ if $(x, y) \in E(G)$, then for each $u \in Tx$, there exists $v \in Ty$ such that $(u, v) \in E(G)$.

We first prove the following fixed point theorem.

Theorem 3.1. Let (X,d) be a complete metric space and G be a directed graph on X such that (X,d,G) satisfies the following property, Property (P):

$$\forall \{x_n\} \subseteq X \text{ with } x_n \longrightarrow x, \exists \text{ subsequence } \{x_{k_n}\}$$

of $\{x_n\}$ such that $(x_{k_n}, x) \in E(G).$

Let $T: X \to P_b(X)$ be multivalued mapping satisfying the following properties:

- (i) there exist $a, b, c \in \mathbb{R}_0^+$ and a + b + c < 1such that $\delta(Tx, Ty) \leq ad(x, y) + bd(x, Tx) + c\delta(y, Ty), \forall (x, y) \in E(G);$
- (*ii*) T has graph preserving property.

If $X_T = \{x \mid \exists u \in Tx, (x, u) \in E(G)\}$ is nonempty, then $Fix(T) = SFix(T) \neq \emptyset$.

Proof. Since $X_T \neq \emptyset$, there exists $x_0 \in X$, $\exists x_1 \in Tx_0$ such that $(x_0, x_1) \in E(G)$. So, we get

$$\delta(x_1, Tx_1) \le \delta(Tx_0, Tx_1).$$

By (i), we have

$$\begin{split} \delta(x_1, Tx_1) &\leq \delta(Tx_0, Tx_1) \\ &\leq ad(x_0, x_1) + bd(x_0, Tx_0) + c\delta(x_1, Tx_1) \\ &\leq ad(x_0, x_1) + bd(x_0, x_1) + c\delta(x_1, Tx_1), \end{split}$$

then

$$\delta(x_1, Tx_1) \le \frac{a+b}{1-c} d(x_0, x_1).$$
(3.1)

Since $(x_0, x_1) \in E(G)$ and $x_1 \in Tx_0$, by (*ii*), there exists $x_2 \in Tx_1$ such that $(x_1, x_2) \in E(G)$. By (3.1), we have

$$d(x_1, x_2) \le \delta(x_1, Tx_1) \le \frac{a+b}{1-c} d(x_0, x_1).$$
 (3.2)

Since $(x_1, x_2) \in E(G)$, by (i), we have

$$\begin{split} \delta(x_2, Tx_2) &\leq \delta(Tx_1, Tx_2) \\ &\leq ad(x_1, x_2) + bd(x_1, Tx_1) + c\delta(x_2, Tx_2) \\ &\leq ad(x_1, x_2) + bd(x_1, x_2) + c\delta(x_2, Tx_2) \\ &\leq \frac{a+b}{1-c}d(x_1, x_2). \end{split}$$

This together with (3.2) we get

$$\delta(x_2, Tx_2) \le \left(\frac{a+b}{1-c}\right)^2 d(x_0, x_1).$$
 (3.3)

Since $(x_1, x_2) \in E(G)$ and $x_2 \in Tx_1$, by (ii), there exists $x_3 \in Tx_2$ such that $(x_2, x_3) \in E(G)$. By (3.3), we have

$$d(x_2, x_3) \le \delta(x_2, Tx_2) \le \left(\frac{a+b}{1-c}\right)^2 d(x_0, x_1).$$
(3.4)

By continuing in this way, we obtain sequence $\{x_n\} \subseteq X$ such that

$$(x_n, x_{n+1}) \in E(G), \ \forall n \in \mathbb{N},$$
$$\delta(x_n, Tx_n) \le \left(\frac{a+b}{1-c}\right)^n d(x_0, x_1), \ \forall n \in \mathbb{N},$$
$$d(x_n, x_{n+1}) \le \left(\frac{a+b}{1-c}\right)^n d(x_0, x_1), \ \forall n \in \mathbb{N}.$$

We claim that $\{x_n\}$ is a Cauchy sequence. Since $\frac{a+b}{1-c} < 1$, we get that $\sum_{i=1}^{\infty} d(x_i, x_{i+1}) < \infty$. This implies that $\{x_n\}$ is a Cauchy sequence. Since (X, d) is complete metric space, there exists x such that $x_n \longrightarrow x$. We will show that x is a fixed point of T. By property (P), there exists $\{x_{k_n}\} \subseteq \{x_n\}$ such that $(x_{k_n}, x) \in E(G), \forall n \in \mathbb{N}$. Then

$$\delta(x, Tx) \le d(x, x_{k_n+1}) + \delta(x_{k_n+1}, Tx) \\\le d(x, x_{k_n+1}) + \delta(Tx_{k_n}, Tx) \\\le d(x, x_{k_n+1}) + ad(x_{k_n}, x) \\+ bd(x_{k_n}, Tx_{k_n}) + c\delta(x, Tx).$$

It follows that

$$\begin{split} \delta(x,Tx) &\leq \frac{1}{1-c} d(x,x_{k_n+1}) + \frac{a}{1-c} d(x_{k_n},x) \\ &+ \frac{b}{1-c} \left(\frac{a+b}{1-c}\right)^{k_n} d(x_0,x_1). \end{split}$$

By taking $n \to \infty$, we get $\delta(x, Tx) = 0$. It's obvious that $\emptyset \neq SFix(T) \subseteq Fix(T)$. We will prove that Fix(T) = SFix(T). We need to prove that $Fix(T) \subseteq SFix(T)$. Let $x \in Fix(T)$. By property (P), $(x, x) \in E(G)$, $\forall x \in X$. By (i), we have

$$\delta(Tx, Tx) \le ad(x, x) + bd(x, Tx) + c\delta(x, Tx)$$
$$= c\delta(x, Tx)$$
$$\le c\delta(Tx, Tx).$$

So $\delta(Tx, Tx)$ must be zero, that is, $Tx = \{x\}$. Thus, $Fix(T) \subseteq SFix(T)$. Hence, $Fix(T) = SFix(T) \neq \emptyset$. **Corollary 3.2.** Let (X,d) be a complete metric space and (X,d,G) have the following properties:

for any
$$\{x_n\}$$
 in X , if $x_n \longrightarrow x$ and
 $(x_n, x_{n+1}) \in E(G)$ for $n \in \mathbb{N}$, then
there is a subsequence $\{x_{k_n}\}$ with $(x_{k_n}, x) \in E(G)$
for $n \in \mathbb{N}$.

Let $f: X \longrightarrow X$ be a *G*-contraction, and $\emptyset \neq X_f := \{x \in X : (x, fx) \in E(G)\}$ then $Fix(f) \neq \emptyset$.

Proof. It follows directly by Theorem 3.1, with a = k, b = 0, c = 0.

Theorem 3.3. In addition to the hypothesis of Theorem 3.1, if $x, y \in Fix(T)$ and $(x, y) \in E(G)$, then $Fix(T) = SFix(T) = \{x\}.$

Proof. By Theorem 3.1, we have $Fix(T) = SFix(T) \neq \emptyset$. Let $x, y \in SFix(T)$. Then

$$\begin{aligned} d(x,y) &= \delta(Tx,Ty) \\ &\leq ad(x,y) + bd(x,Tx) + c\delta(y,Ty) \\ &\leq ad(x,y). \end{aligned}$$

Since a < 1, we obtain d(x, y) = 0, so x = y. Hence $Fix(T) = SFix(T) = \{x\}$.

Theorem 3.4. Let (X,d) be a complete metric space and G be a directed graph on X. Let T: $X \rightarrow P_{cp}(X)$ be a continuous multivalued mapping satisfying the following properties:

- (i) there exist $a, b, c \in \mathbb{R}_0^+$ and a + b + c < 1such that $\delta(Tx, Ty) \leq ad(x, y) + bd(x, Tx) + c\delta(y, Ty), \forall (x, y) \in E(G);$
- (*ii*) T has graph preserving property.

If $X_T = \{x \mid \exists u \in Tx, (x, u) \in E(G)\}$ is nonempty, then $Fix(T) \neq \emptyset$.

Proof. By using the same proof as that of Theorem 3.1, we can construct a sequence $\{x_n\} \subseteq X$ such that $x_n \longrightarrow x \in X$. We will show that x is a fixed point of T. We have

$$d(x, Tx) \le d(x, x_k) + d(x_k, Tx_k) + D(Tx_k, Tx) \le d(x, x_k) + d(x_k, x_{k+1}) + D(Tx_k, Tx).$$

By Lemma 2.2, we get $T(x_k) \longrightarrow Tx$. If follow that d(x, Tx) = 0. Hence x is fixed point of T, that is $Fix(T) \neq \emptyset$.

Example 3.1. Let $X = \{1, 1.5, 2, 3\}$ and G = (X, E(G)) with $E(G) = \{(1, 1), (1, 1.5), (1, 2), (1.5, 1), (1.5, 2), (2, 1), (2, 3)\}$. Let $T : X \rightarrow P(X)$ be defined by $T(1) = \{1\}, T(1.5) = \{1\}, T(2) = \{1, 1.5\}, T(3) = \{1, 1.5, 2\}$. It is easy to show that T is continuous and T has graph preserving property, T satisfies property (i) in Theorem 3.4 with a = 0.9, b = 0.009, c = 0.09.

Corollary 3.5. Let (X, d) be complete metric space and (X, \leq) be partially ordered set and let f: $X \longrightarrow X$ be a continuous and non-decreasing mapping such that there exists $k \in [0, 1)$ with

$$d(f(x), f(y)) \le k d(x, y), \ \forall x, y \in X, x \ge y.$$

If there exists $x_0 \in X$ with $x_0 \leq f(x_0)$, then f has a fixed point.

Proof. Let G = (X, E(G)) be graph defined by $(u, v) \in E(G)$ if $v \le u$. Then f satisfies all assumptions of Theorem 3.4. It follows by Theorem 3.4 that f has a fixed point.

Theorem 3.6. In addition to the hypothesis of Theorem 3.4, if graph G has loop at every point, then $Fix(T) = SFix(T) \neq \emptyset$.

Proof. We will prove that Fix(T) = SFix(T). We need to prove that $Fix(T) \subseteq SFix(T)$. Let $x \in Fix(T)$. Then $(x, x) \in E(G)$, $\forall x \in X$. By (i), we have

$$\delta(Tx, Tx) \le ad(x, x) + bd(x, Tx) + c\delta(x, Tx)$$
$$= c\delta(x, Tx)$$
$$\le c\delta(Tx, Tx).$$

So $\delta(Tx,Tx)$ must be zero, that is, $Tx = \{x\}$. Therefore $Fix(T) \subseteq SFix(T)$. Hence, $Fix(T) = SFix(T) \neq \emptyset$.

Theorem 3.7. In addition to the hypothesis of Theorem 3.6, if $x, y \in Fix(T)$ has property that $(x, y) \in E(G)$, then $Fix(T) = SFix(T) = \{x\}$

Proof. By Theorem 3.6, we have $Fix(T) = SFix(T) \neq \emptyset$. Let $x, y \in SFix(T)$. Then

$$\begin{aligned} d(x,y) &= \delta(Tx,Ty) \\ &\leq ad(x,y) + bd(x,Tx) + c\delta(y,Ty) \\ &\leq ad(x,y). \end{aligned}$$

Since a < 1, we obtain d(x, y) = 0, so x = y. Hence $Fix(T) = SFix(T) = \{x\}$.

Remark 3.8. We note that we use δ function to measure distance between the two sets in Theorem 3.1. This function is suitable to the studied graph-preserving multi-valued mappings. How about the Hausdorff distanc, can we use this instead of the δ function? When T in Theorem 3.1 is single, Theorem 3.1 can be viewed as an extension of several known results.

References

- [1] Nadler Jr., S. B. (1969). Multi-valued contraction mappings. **Pacific J. Math.**, 30, 475-487.
- Jachymski, J. R. (2008). The contraction principle for mappings on a metric space with a graph.
 Proc. Amer. Math. Soc., 136 (4), 1359-1373.

- [3] Chifu, C., Petrusel, G., & Bota, M. (2013). Fixed point and strict fixed point for multivalued contraction of Reich type on metric spaces endowed with a graph. Fixed Point Theory and Applications, 2013, 1-12.
- [4] Nieto, J. J. & Rodriguez-Lopez, R. (2005). Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order., 22, 223-239.
- [5] Beg, I., Butt, A. R., & Radojevic, S. (2010). The contraction principle for set valued mappings on a metric space with a graph. Comp. Math. Appl., 60, 1214-1219.