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Abstract
In this paper, we introduce a new type of graph-preserving multivalued mappings in a complete metric

space endowed with a directed graph and prove some fixed point theorems under some contractive con-
ditions related to a Reich type contraction. We also give some examples supporting our main results. The
main results obtained in the paper extend and generalize many results in the literature.
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บทคัดยอ
ในการวิจัยนี้ เราไดแนะนำการสงหลายคาที่รักษากราฟในปริภูมิเมตริกบริบูรณพรอมดวยกราฟที่ระบุทิศทาง และไดพิสูจน

ทฤษฎีบทจุดตรึงของการสงดังกลาวภายใตเงื่อนไขการหดตัวบางอยาง นอกจากนั้นยังไดใหตัวอยางเพื่อสนับสนุนผลลัพธหลักที่
ไดศึกษา ผลลัพธที่ไดจากงานวิจัยนี้ ขยายผลลัพธอื่น ๆ จำนวนมากตามเอกสารอางอิง

คำสำคัญ: จุดตรึง, ปริภูมิเมตริกบริบูรณ, การสงหลายคา

1. Introduction

Fixed point theory of multivalued mappings
plays an important role in science and applied sci-
ence such as Physics and Economics.

Let (X, d) be a metric space, we let P (X) be
a power set of X , Pb(X) the set of all nonempty
bounded subsets of X , Pcb(X) the set of all
nonempty closed bounded subsets of X , Pcp(X)

the set of all nonempty compact subsets of X . If
T : X −→ P (X) is a multivalued mapping, then we
will said that x is a fixed point of T if x ∈ Tx. The
set Fix(T ) := {x ∈ X | x ∈ Tx} is called the fixed
point set of T and SFix(T ) := {x ∈ X | {x} = Tx}
is called the strict fixed point set of T .

Let A and B be subsets of X , the Hausdorff dis-
tance of A and B, denoted by D(A,B), is defined
by
D(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

and the function δ(A,B) is defined by
δ(A,B) = sup

a∈A,b∈B
d(a, b).

For x ∈ X and A ⊆ X , the distance between set A
and point x is defined by d(x,A) = inf

a∈A
d(x, a).

The first well known fixed point theorem for mul-
tivalued mappings was established by Nadler in 1969
[1].
Theorem 1.1. Let (X, d) be a complete metric
space and let T be a mapping from X into Pcb(X).
Assume that there exists k ∈ [0, 1) such that

D(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X.

Then there exists z ∈ X such that z ∈ Tz.

The Nadler's fixed point theorem has been
extended and modified in many directions. In
2008, Jachymski [2] introduced the concept of G-
contraction in complete metric spaces endowed
with graph.
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Definition 1.2 ([2]). Let (X, d) be a metric space and
let G = (V (G), E(G)) be a directed graph such
that V (G) = X and E(G) contains all loops, i.e.,
{(x, x) : x ∈ X} ⊆ E(G). We say that a mapping
f : X −→ X is a G-contraction if f preserves edges
of G, i.e.,

x, y ∈ X, (x, y) ∈ E(G) ⇒ (f(x), f(y)) ∈ E(G)

and there exists α ∈ (0, 1) such that

x, y ∈ X, (x, y) ∈ E(G) ⇒

d(f(x), f(y)) ≤ αd(x, y).

Jachymski [2] showed that under the condition
on (X, d,G), G-contraction, f : X −→ X has fixed
point if and only if Xf := {x ∈ X | (x, f(x)) ∈
E(G)} is nonempty. The mapping f preserving edge
is called a graph preserving mapping. Beg et al. [5]
introduced the concept of G-contraction for mul-
tivalued mapping T : X −→ Pcb(X) and proved
some fixed point theorems.
Definition 1.3 ([5]). Let T : X −→ Pcb(X) be mul-
tivalued mapping. This mapping is said to be a G-
contraction if there exists k ∈ (0, 1) such that

D(Tx, Ty) ≤ kd(x, y), ∀(x, y) ∈ E(G)

and if u ∈ Tx and v ∈ Ty satisfy that

d(u, v) ≤ kd(x, y) + α, for each α > 0,

then (u, v) ∈ E(G).

They showed that if (X, d) is complete metric
space and (X, d,G) has preserving property, then a
G-contraction mapping T : X −→ Pcp(X) has fixed
point if and only if Xf := {x ∈ X | (x, y) ∈ E(G)

for some y ∈ Tx} is nonempty.
Throughout this paper, we use R+

0 to denote the
set of all nonnegative real numbers.
Theorem 1.4 (Chifu et al. [5]). Let (X, d) be a com-
plete metric space and G be a directed graph on X

such that (X, d,G) satisfies the following property
(P):
∀{xn} ⊆ X with xn −→ x, ∃ subsequence {xkn}

of {xn} such that (xkn , x) ∈ E(G).

Let T : X → Pb(X) be a multivalued mapping
which has the following properties:

(i) there exist a, b, c ∈ R+
0 with b ̸= 0 and

a+b+c < 1 such that δ(Tx, Ty) ≤ ad(x, y)+

bδ(x, Tx) + cδ(y, Ty), ∀(x, y) ∈ E(G);

(ii) for each x ∈ X , the set XT (x) := {y ∈ Tx :

(x, y) ∈ E(G) and δ(x, Tx) ≤ qd(x, y) for
some q ∈]1, 1−a−c

b [} is nonempty.

Then we have

(a) Fix(T ) = SFix(T ) ̸= ∅;

(b) if we additionally suppose that x∗, y∗ ∈
Fix(T ) ⇒ (x∗, y∗) ∈ E(G), then Fix(T ) =

SFix(T ) = {x∗}.

In this paper, we modify some conditions of
above theorem of Chifu et al. to obtain some fixed
point theorems for the new type of multivalued
mappings in complete metric space with graph.

2. Preliminaries

Let X,Y be two sets and T : X −→ P (Y ). For
M ⊆ X , we define T (M) =

∪
x∈M

T (x).

Definition 2.1 (Continuity). Let X,Y be topological
spaces and T : X −→ P (Y ) a multivalued mapping.

(1) T is called upper semi-continuous, if for ev-
ery x ∈ X and every open set V in Y with
Tx ⊆ V , there exists a neighborhood U(x) of
x such that T (U(x)) ⊆ V .

(2) T is called lower semi-continuous, if for every
x ∈ X , y ∈ Tx and every neighborhood V (y)

of y, there exists a neighborhood U(x) of x
such that

Tu ∩ V (y) ̸= ∅, u ∈ U(x).

(3) T is called continuous if it is both upper semi-
continuous and lower semi-continuous.

The following result is well known.

Lemma 2.2. Let (X, d) be a metric space and T :

X −→ Pcp(X) is continuous. If xn −→ x, then
T (xn) −→ T (x) under the Hausdorff distance.
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3. Fixed point theorems

We start with giving the graph preserving property
for multivalued mapping.
Graph preserving property: Let G be a directed
graph on X . A mapping T : X −→ P (X) is said to
have graph preserving property, if for each x, y ∈ X

if (x, y) ∈ E(G), then for each u ∈ Tx, there exists
v ∈ Ty such that (u, v) ∈ E(G).

We first prove the following fixed point theorem.
Theorem 3.1. Let (X, d) be a complete metric
space and G be a directed graph on X such that
(X, d,G) satisfies the following property,
Property (P):
∀{xn} ⊆ X with xn −→ x, ∃ subsequence {xkn}

of {xn} such that (xkn , x) ∈ E(G).

Let T : X → Pb(X) be multivalued mapping satis-
fying the following properties:
(i) there exist a, b, c ∈ R+

0 and a + b + c < 1

such that δ(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) +

cδ(y, Ty), ∀(x, y) ∈ E(G);

(ii) T has graph preserving property.
If XT = {x | ∃u ∈ Tx, (x, u) ∈ E(G)} is nonempty,
then Fix(T ) = SFix(T ) ̸= ∅.

Proof. Since XT ̸= ∅, there exists x0 ∈ X, ∃x1 ∈
Tx0 such that (x0, x1) ∈ E(G). So, we get

δ(x1, Tx1) ≤ δ(Tx0, Tx1).

By (i), we have
δ(x1, Tx1) ≤ δ(Tx0, Tx1)

≤ ad(x0, x1) + bd(x0, Tx0) + cδ(x1, Tx1)

≤ ad(x0, x1) + bd(x0, x1) + cδ(x1, Tx1),

then
δ(x1, Tx1) ≤

a+ b

1− c
d(x0, x1). (3.1)

Since (x0, x1) ∈ E(G) and x1 ∈ Tx0, by (ii), there
exists x2 ∈ Tx1 such that (x1, x2) ∈ E(G). By (3.1),
we have

d(x1, x2) ≤ δ(x1, Tx1) ≤
a+ b

1− c
d(x0, x1). (3.2)

Since (x1, x2) ∈ E(G), by (i), we have
δ(x2, Tx2) ≤ δ(Tx1, Tx2)

≤ ad(x1, x2) + bd(x1, Tx1) + cδ(x2, Tx2)

≤ ad(x1, x2) + bd(x1, x2) + cδ(x2, Tx2)

≤
a+ b

1− c
d(x1, x2).

This together with (3.2) we get

δ(x2, Tx2) ≤
(
a+ b

1− c

)2

d(x0, x1). (3.3)

Since (x1, x2) ∈ E(G) and x2 ∈ Tx1, by (ii), there
exists x3 ∈ Tx2 such that (x2, x3) ∈ E(G). By (3.3),
we have

d(x2, x3) ≤ δ(x2, Tx2) ≤
(
a+ b

1− c

)2

d(x0, x1).

(3.4)
By continuing in this way, we obtain sequence
{xn} ⊆ X such that

(xn, xn+1) ∈ E(G), ∀n ∈ N,

δ(xn, Txn) ≤
(
a+ b

1− c

)n

d(x0, x1), ∀n ∈ N,

d(xn, xn+1) ≤
(
a+ b

1− c

)n

d(x0, x1), ∀n ∈ N.

We claim that {xn} is a Cauchy sequence. Since
a+b
1−c < 1, we get that∑∞

i=1 d(xi, xi+1) < ∞. This im-
plies that {xn} is a Cauchy sequence. Since (X, d)

is complete metric space, there exists x such that
xn −→ x. We will show that x is a fixed point of T .
By property (P), there exists {xkn} ⊆ {xn} such that
(xkn , x) ∈ E(G), ∀n ∈ N. Then

δ(x, Tx) ≤ d(x, xkn+1) + δ(xkn+1, Tx)

≤ d(x, xkn+1) + δ(Txkn , Tx)

≤ d(x, xkn+1) + ad(xkn , x)

+ bd(xkn , Txkn) + cδ(x, Tx).

It follows that
δ(x, Tx) ≤

1

1− c
d(x, xkn+1) +

a

1− c
d(xkn , x)

+
b

1− c

(
a+ b

1− c

)kn

d(x0, x1).

By taking n −→ ∞, we get δ(x, Tx) = 0. It's ob-
vious that ∅ ̸= SFix(T ) ⊆ Fix(T ). We will prove
that Fix(T ) = SFix(T ). We need to prove that
Fix(T ) ⊆ SFix(T ). Let x ∈ Fix(T ). By property
(P), (x, x) ∈ E(G), ∀x ∈ X. By (i), we have

δ(Tx, Tx) ≤ ad(x, x) + bd(x, Tx) + cδ(x, Tx)

= cδ(x, Tx)

≤ cδ(Tx, Tx).

So δ(Tx, Tx) must be zero, that is, Tx = {x}. Thus,
Fix(T ) ⊆ SFix(T ). Hence, Fix(T ) = SFix(T ) ̸=
∅.
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Corollary 3.2. Let (X, d) be a complete metric
space and (X, d,G) have the following properties:

for any {xn} in X , if xn −→ x and
(xn, xn+1) ∈ E(G) for n ∈ N, then

there is a subsequence {xkn} with (xkn , x) ∈ E(G)

for n ∈ N.

Let f : X −→ X be a G-contraction, and ∅ ̸= Xf :=

{x ∈ X : (x, fx) ∈ E(G)} then Fix(f) ̸= ∅.

Proof. It follows directly by Theorem 3.1, with a =

k, b = 0, c = 0.

Theorem 3.3. In addition to the hypothesis of The-
orem 3.1, if x, y ∈ Fix(T ) and (x, y) ∈ E(G), then
Fix(T ) = SFix(T ) = {x}.

Proof. By Theorem 3.1, we have Fix(T ) =

SFix(T ) ̸= ∅. Let x, y ∈ SFix(T ). Then

d(x, y) = δ(Tx, Ty)

≤ ad(x, y) + bd(x, Tx) + cδ(y, Ty)

≤ ad(x, y).

Since a < 1, we obtain d(x, y) = 0, so x = y. Hence
Fix(T ) = SFix(T ) = {x}.

Theorem 3.4. Let (X, d) be a complete metric
space and G be a directed graph on X . Let T :

X → Pcp(X) be a continuous multivalued map-
ping satisfying the following properties:

(i) there exist a, b, c ∈ R+
0 and a + b + c < 1

such that δ(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) +

cδ(y, Ty), ∀(x, y) ∈ E(G);

(ii) T has graph preserving property.

If XT = {x | ∃u ∈ Tx, (x, u) ∈ E(G)} is nonempty,
then Fix(T ) ̸= ∅.

Proof. By using the same proof as that of Theorem
3.1, we can construct a sequence {xn} ⊆ X such
that xn −→ x ∈ X. We will show that x is a fixed
point of T. We have

d(x, Tx) ≤ d(x, xk) + d(xk, Txk) +D(Txk, Tx)

≤ d(x, xk) + d(xk, xk+1) +D(Txk, Tx).

By Lemma 2.2, we get T (xk) −→ Tx. If follow that
d(x, Tx) = 0. Hence x is fixed point of T , that is
Fix(T ) ̸= ∅.

Example 3.1. Let X = {1, 1.5, 2, 3} and
G = (X,E(G)) with E(G) = {(1, 1), (1, 1.5),

(1, 2), (1.5, 1), (1.5, 2), (2, 1), (2, 3)}. Let T : X −→
P (X) be defined by T (1) = {1}, T (1.5) = {1},
T (2) = {1, 1.5}, T (3) = {1, 1.5, 2}. It is easy to
show that T is continuous and T has graph preserv-
ing property, T satisfies property (i) in Theorem 3.4
with a = 0.9, b = 0.009, c = 0.09.
Corollary 3.5. Let (X, d) be complete metric space
and (X,≤) be partially ordered set and let f :

X −→ X be a continuous and non-decreasing map-
ping such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ kd(x, y), ∀x, y ∈ X,x ≥ y.

If there exists x0 ∈ X with x0 ≤ f(x0), then f has a
fixed point.
Proof. Let G = (X,E(G)) be graph defined by
(u, v) ∈ E(G) if v ≤ u. Then f satisfies all assump-
tions of Theorem 3.4. It follows by Theorem 3.4 that
f has a fixed point.
Theorem 3.6. In addition to the hypothesis of The-
orem 3.4, if graph G has loop at every point, then
Fix(T ) = SFix(T ) ̸= ∅.
Proof. We will prove that Fix(T ) = SFix(T ). We
need to prove that Fix(T ) ⊆ SFix(T ). Let x ∈
Fix(T ). Then (x, x) ∈ E(G), ∀x ∈ X. By (i), we
have

δ(Tx, Tx) ≤ ad(x, x) + bd(x, Tx) + cδ(x, Tx)

= cδ(x, Tx)

≤ cδ(Tx, Tx).

So δ(Tx, Tx) must be zero, that is, Tx = {x}.
Therefore Fix(T ) ⊆ SFix(T ). Hence, Fix(T ) =

SFix(T ) ̸= ∅.

Theorem 3.7. In addition to the hypothesis of The-
orem 3.6 , if x, y ∈ Fix(T ) has property that
(x, y) ∈ E(G), then Fix(T ) = SFix(T ) = {x}

Proof. By Theorem 3.6, we have Fix(T ) =

SFix(T ) ̸= ∅. Let x, y ∈ SFix(T ). Then
d(x, y) = δ(Tx, Ty)

≤ ad(x, y) + bd(x, Tx) + cδ(y, Ty)

≤ ad(x, y).

Since a < 1, we obtain d(x, y) = 0, so x = y. Hence
Fix(T ) = SFix(T ) = {x}.
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Remark 3.8. We note that we use δ function to
measure distance between the two sets in Theorem
3.1. This function is suitable to the studied graph-
preserving multi-valued mappings. How about the
Hausdorff distanc, can we use this instead of the δ

function? When T in Theorem 3.1 is single, Theorem
3.1 can be viewed as an extension of several known
results.
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