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Abstract 

 An analytical solution of the steady state magnetic field due to a direct current source is derived 
for the problem of a buried current source and a buried receiver. The model is developed for source and 
receiver electrodes arbitrarily located in a horizontally stratified layered earth. The generalized Hankel 
transform is introduced to our problem and analytical result is obtained. Our solution is achieved by 
solving a boundary value problem in the wavenumber domain and then transforming the solution back 
to the spatial domain. An inverse problem via the use of the Levenberg-Marquardt optimization 
technique is introduced for finding the conductivity parameters of the ground. The method leads to very 
good result and has high speed of convergence. 
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บทคัดย่อ 

 ผลเฉลยเชิงวิเคราะห์ของสนามแม่เหล็กในสภาวะคงตัวอันเนื่องจากแหล่งกําเนิดไฟฟ้ากระแสตรงได้ถูกนําเสนอขึ้น
สําหรับปัญหาของแหล่งจ่ายไฟฟ้าและตัวรับสัญญาณแบบฝัง แบบจําลองถูกพัฒนาสําหรับข้ัวไฟฟ้าซ่ึงถูกฝังอยู่ใต้พ้ืนผิวดินท่ีมี
ลักษณะเป็นชั้นขนานกับแนวระดับ การแปลงฮันเกลแบบท่ัวไปถูกนํามาใช้ในปัญหาซ่ึงทําให้ได้ผลเฉลยเชิงวิเคราะห์ ผลเฉลย
ดังกล่าวสามารถหาได้โดยการแก้ปัญหาค่าขอบในโดเมนเชิงความถี่แล้วแปลงผลเฉลยกลับมายังโดเมนเชิงปริภูมิ เทคนิคการหา
ค่าเหมาะท่ีสุดแบบเลเวนเบิร์ก-มาร์ควอร์ทถูกนํามาใช้ในปัญหาผกผันเพ่ือหาพารามิเตอร์ของสภาพนําไฟฟ้าของพ้ืนโลก วิธี
ดังกล่าวให้ผลลัพธ์ท่ีดีและมีการลู่เข้าของผลเฉลยอย่างรวดเร็ว 

คําสําคัญ: สนามแม่เหล็ก, ไฟฟ้ากระแสตรง, ข้ัวไฟฟ้าแบบฝัง, ตัวกลางแบบระดับชั้น, การแปลงฮันเกล 
 
Introduction 

Magnetometric resistivity (MMR) is a magnetic exploration method that has been used successfully 
to investigate electrical conductivity structures within the earth. The mathematical and analytical aspects 
of the MMR method are described in a review paper written by Edwards et al. [1]. The characteristic 
anomalies for an anisotropic earth, for thin and thick dykes, for semicylindrical and hemispherical 
depressions are described in some detail. Edwards [2] concentrated on estimating the ratio of the 
magnetic fields below and above a known conductive surface layer to infer the basement resistivity. 
Inayat-Hussain [3] gave a new proof that the magnetic field outside the horizontally stratified conductor is 
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independent of the electrical conductivity. Veitch et al. [4] indirectly derived a solution of the magnetic 
field in a layered earth containing buried electrodes by using Stoke's theorem and Ampère's law, which 
was presented by Daniels [5]. Unfortunately, these researches are not sufficiently general concerning the 
magnetic field to be used for many applications. 

In this paper, an analytical solution of the magnetic field is derived directly from solving a boundary 
value problem in the wavenumber domain, similar to the approach used by Edwards [2]. The generalized 
Hankel transform [6] is introduced to our problem and analytical result is obtained. The inversion process, 
using the Levenberg-Marquardt algorithm [7], is conducted to estimate the conductivity parameters of  
the ground. 
 
Model and basic equations 

 

As shown in Figure 1, a geometric model of the earth's structure consists of two conductive half-
spaces. The half-space above the ground surface ( )0z <  is a region of air, denoted by layer 0. The half-

space below the ground surface ( )0z >  is an n - layered horizontally stratified layered earth with depths 

to the layers 1 2 1, , , nh h h -  measured from the ground surface (the lowermost layer extending to infinity). 
An electrode of exciting current I  is placed deliberately at the interface sz h=  of layer s  and layer 
1s +  ( )0 1s n£ £ -  to simplify the mathematics. Each layer has electrical conductivity as a function of 

depth, i.e., ( )k zs  for layer 0 k n£ £ . 
 

1. Magnetic field from a DC source in a 1D structure 
The general steady state Maxwell's equations in the frequency wave number domain [2] can be 

used to determine the magnetic field for our problem, namely 
 

 ´ =E 0     and    s´ =H E , (1) 
 

where E  is the vector electric field, H  is the vector magnetic field and s  is the electrical conductivity of 
the medium. 
 

 
Figure 1 Geometric model of the earth's structure. 
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Since the problem is axisymmetric and H  has only the azimuthal component in cylindrical coordinates, 
for simplicity, we use H  to represent the azimuthal component in the following derivations. In our study, 
we denote s  as a function of only depth ,z  and we now have 
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The generalized Hankel transform [6] is introduced and defined by 
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where 1J  is the Bessel function of the first kind of order one and l  is the scaling factor. Taking the 
transformation on both sides of equation (2), we obtain 
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Therefore, the magnetic field in each layer can be obtained by taking the inverse generalized Hankel 
transform to the solution of equation (4). 
 

2. Boundary conditions 
The problem satisfies the following physical boundary conditions: 
 2.1 The azimuthal component of the magnetic field 0H

  actually converges to zero as z  
tends to minus infinity. 

 2.2 The azimuthal component of the magnetic field nH
  also converges to zero as z  tends to 

infinity [4]. 
 2.3 The azimuthal component of the magnetic field needs to be continuous on each of      

the boundary planes except on sz h= , i.e., for each 0 1k n£ £ -  and k s¹ , 
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 2.4 The radial component of the electric field needs to be continuous on each of               
the boundary planes [8], i.e., for each 0 1k n£ £ - , 
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 2.5 The total current flowing out of any cylindrical surface around a current source must be 
equal to the current intensity [9], i.e., 
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Solution of the problem 
 

For each layer k , where 0 k n£ £  and 1n ³ , having constant conductivity (s is constant), 
equation (4) reduces to 
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and the solution is 
 

 ( ), z z
k k kH z A e B el ll -= + , (9) 

 

where the unknown coefficients kA  and kB  are arbitrary constants, which can be determined by using 
the upward and downward recurrences related to the above boundary conditions (see Sato [9]). 
 

1. 2-layered earth 
Consider a 2-layered earth model with a nonconductive layer 0 (representing a region of air). An 

overburden has a conductivity 1s  with thickness 1h  overlying a host medium having conductivity 2s  with 
infinite depth. A current electrode is located at the interface 1z h= . The magnetic field in a host medium 
can be written as 
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2. Uniform half-space 
In the case of a uniform half-space, the magnetic field as shown in equation (10) can be 

determined by using the Lipschitz-Hankel integral [10] and we obtain 
 

 ( )
( ) ( )
1 1

2 22 2
1 1

, 2
4

z h z hI
H r z

r
r z h r z h

p

æ ö÷ç ÷ç ÷+ -ç ÷ç ÷= - -ç ÷ç ÷÷ç ÷ç + + + - ÷çè ø

, (11) 

 

which is the same result obtained by Veitch et al. [4], and Nabighian et al. [11]. 
 
Inversion process 
 

In our inversion example, we simulate the reflection of magnetic radiation data from our forward 
model of practical interest. Random errors up to 3% are superimposed on the scaled magnetic fields to 
simulate the set of real data. Chave's algorithm [12] is used for numerically calculating the inverse Hankel 
transform of the magnetic field solutions. The example model is a 2-layered electrically conductive earth 
with current electrode buried at depth 1h  in an overburden of thickness 2 1h h> . Using an artificial 
interface defined by the plane 1z h= , the area of overburden can be divided into two layers, denoted by 
layers 1 and 2 with conductivity 1 2s s= . A host medium is denoted by layer 3 which has a conductivity 

3s  with infinite depth. The values of the model parameters are tabulated in Table 1. The iterative 
procedure using the Levenberg-Marquardt method [7] is applied to estimate the model parameters of 
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conductivity variation. Some parameters are assumed to be known and therefore are fixed, e.g., 
conductivity 1s . The parameter 1s  is a conductivity of the earth's surface, which can be known from the 
measurement. We start the iterative process to find the values of the conductivity parameters with initial 
guess values 2h  =  11 m and 3s  =  0.01 S/m. The optimal result of our sample test converges very fast 
to the true value with percentage errors of 2h  and 3s  less than 0.03% and 1.49%, respectively, after 
using only 16 iterations. The graphs of the true and estimated conductivity models are plotted and 
compared as shown in Figure 2. We clearly see that the graph of the estimated model is close to the true 
model of conductivity profile. The inversion scheme leads to very good result and has high speed of 
convergence. This shows the robustness of our model and procedure. 
 

Table 1 Model parameters used in our sample test. 
Parameters 

1s  (S/m) 2s  (S/m) 3s  (S/m) 1h  (m) 2h  (m) 
0.05 0.05 0.5 10 17.5 

 

 
 

Figure 2 Graphs of conductivity s  against depth z  for our inversion example. 
 
Conclusions 
 

We have derived an analytical solution of the steady state magnetic field for the problem of 
source and receiver electrodes buried anywhere within a horizontally stratified layered earth. Our solution 
is compared with a published result. This comparison shows that our approach used to handle             
the physical conditions is correct. The solution can be used to interpret downhole and marine MMR data 
in which geophysical inversion is required. 
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