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Abstract
Time-resolved phase-amplitude coupling (tPAC) is increasingly used in clarifying the interactions between neuronal oscillation
of different frequencies. In this study, Airy wavelet-based method for tPAC estimates on small numbers of trials is presented.
The method was validated using both synthesized and experimental data. Simulation results suggested that tPAC analysis using
more than 15 trials offers better joint time-frequency resolution. Experimental results showed that tPAC estimates on 30-,
50-, and 100-step cycles are able to detect similar significant coupling in the time-frequency plane. Dominant couplings are
between ≈ 6 Hz and 8-32 Hz around heel contact. These frequency components partly overlap with the frequency components
of motor unit activity during human treadmill walking. Wavelet tPAC analysis presented in this study may be used to track time-
localised common oscillations in short segments of non-stationary neurophysiological signals with varying time and frequency
resolution.
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1. Introduction

Signal processing has become increasingly impor-
tant in the field of neuroscience [1 – 4]. Analysis of
the frequency content of electrophysiological signals
are useful ways to examine neuronal synchrony [1,
5]. A broad class of neurophysiological signals may
be modeled as modulated oscillations, using analytic
signals. Continuous complex-valued wavelet trans-
forms play a key role in analysis of modulated oscil-
latory signals [6]. In recent years, analytic continu-
ous wavelet transform − generalized Morse wavelets,
have become a popular time-frequency analysis tech-
nique [7 –10]. They are highly flexible and form a
two-parameter family of wavelets that have been used
for studying time-varying properties of non-stationary
neurophysiological signals [7, 11].

There are a number of popular measures used to
investigate and characterise non-stationary neuronal
coupling. Recently, there is increasing interest in clar-
ifying the interactions between neuronal oscillations
of different frequencies [11 – 16]. This form of inter-
action is commonly called cross-frequency coupling
(CFC). One type of CFC, known as phase-amplitude
coupling (PAC) or nested oscillation, occurs when the
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amplitude of a high frequency oscillation is modulated
by the phase of a low frequency oscillation. More
recently, several methods have been used to evalu-
ate PAC on electrophysiology recordings such as elec-
troencephalogram (EEG), local field potential (LFP)
and other brain recordings [11, 14, 15, 17 – 22]. Most
methods investigate PAC in the frequency domain and
require long segments of experimental data. Recently,
a time-resolved measure of phase-amplitude coupling
(tPAC) between neural oscillation is used to detect
temporal profile and frequencies of coupled oscilla-
tory components [22]. The study of [22] suggests that
tPAC provides high temporal resolution, the capacity
of estimating coupling strength, and low sensitivity to
noise conditions obtained with the short data lengths.

This paper focused on the application of wavelets
and spectral tracking methods. The aim was to de-
velop techniques that characterise short segments of
data from natural movements. The behaviour of the
generalised Morse wavelets-based method for tPAC
analysis with an emphasis on small numbers of trials
was explored. Our method was validated using both
simulated and experimental data. We concluded with
a discussion of our approach and recommendations re-
garding the current findings.
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2. Methods

2.1. The generalized Morse wavelets

The generalized Morse wavelets are complex-
valued analytic wavelet transforms containing infor-
mation on both amplitude and phase [6]. They are
maybe a good choice for application to very time-
localized structures [23, 24]. The generalised Morse
wavelets form a two-parameter family of wavelets, β
and γ. By varying these two parameters, the gener-
alised Morse wavelets can take on a wide range of
characteristics and still remain exactly analytic. The
analyticity of wavelets (Ψ(ω) = 0 for ω < 0) is im-
portant for the analysis of strongly modulated signals,
where the wavelets are required to be very narrow in
time for matching the modulation time scale [23].

The zero order generalized Morse wavelet used in
this study is defined in frequency domain as

Ψβ,γ(ω) =
√

2H(ω)Ak;β,γω
βe−ω

γ

(1)

where H(ω) is the Heaviside unit step function and
Ak;β,γ is a normalising constant that can be expressed
by

Ak;β,γ =
√
πγ2rΓ(k + 1/Γ(k + r)) (2)

where Γ(•) denotes the gamma function and r = (2β+

1)/γ. The maximum amplitude occurs at the peak fre-
quency [8],

ωβ,γ ≡

(
β

γ

) 1
γ

(3)

The rescaled second derivative of the frequency-
domain wavelets evaluated at its peak frequency is
P2
β,γ ≡ βγ, and Pβ,γ is called the dimensionless wavelet

duration [6], defined as

Pβ,γ ≡
√
βγ (4)

It is worth to note that Eq. (3) and (4) are key proper-
ties which depend only on two parameters, β and γ.

To explore the trade-off between time and frequency
precision, the localisation measures (σt, σω, Aβ,γ, and
P2
β,γ) for some members of the generalized Morse

wavelets are given in Table 1. Note that σt and σω
are a time width and a frequency width of the window
function or a standard deviation (radius) in time and
frequency of the wavelet, respectively. This table pro-
vides alternative choices for a particular application.
For example, at fixed P2

β,γ = βγ = 12, the Heisenberg
area of γ = 3 is the most close to its lower bound for
β > 1, as seen in Table 1. More details regarding the
different roles of β and γ in controlling wavelet prop-
erties can be found in [6, 8, 23].

In summary, Airy wavelets (γ = 3) are desirable in
this study because they give wavelets having a high
degree of symmetry in the frequency domain, as seen
in Table 1. Increasing β (β > 3) at γ= 3, the Heisen-
berg area of the generalized Morse wavelets (Aβ,γ) ap-
proaches its theoretical lower bound at Aβ,γ=0.5. This

property may lead to good performance as previously
mentioned. Increasing β at fixed γ, wavelets are more
oscillatory and have a narrower bandwidth in the fre-
quency domain. Generally, choosing a small value of
β gives wavelets that are highly time-localized as op-
posed to frequency-localized, as seen in Table 1 for the
values of σt and σω. Note that with γ = 3, β should
be grater than one (β >

(
γ−1

2

)
), as stated in [24].

2.2. Wavelet time-resolved phase-amplitude coupling
estimates

Time-resolved PAC (tPAC) is a method to resolve
PAC measures in time. Here, an estimation of tPAC in
time-frequency map adapted from [22] and [25] can
be calculated by

tPAC =
1
N

N∑
n=1

 |Z fA, fP,n|√
A2

fA

 (5)

where N is the number of trials, A2
fA

is mean value of
A2

fA
, and Z fA, fP is given by

Z fP, fA = |A fA | · e
iφ fP (6)

Eq. (6) could be used to extract a phase-amplitude cou-
pling measure where A fA is the envelope of higher-
frequency oscillations, and φ fP is the phase of lower-
frequency oscillations.

In this study, steps in the computation of tPAC based
generalized Morse wavelets is shown in Fig. 1. First,
the instantaneous amplitude envelope of the higher-
frequency oscillation and instantaneous phase of the
lower-frequency oscillation were calculated by obtain-
ing an analytic representation of the original signal us-
ing generalized Morse wavelets. Secondly, the instan-
taneous amplitude and phase were extracted from the
analytic representation, and then calculated as the ab-
solute value and the phase angle of the analytic sig-
nal, respectively. The principle of the tPAC proce-
dure requires the steps as the fP with strongest phase-
amplitude coupling with fA bursts in each trial is
searched for automatically using a power spectrum es-
timate [22]. To determine the dominant frequency f ∗P;
the power spectrum PA was estimated and its peaks
were extracted. Also, the power spectrum Px was esti-
mated, and was used for finding the highest peak in PA

that co-occurred with a peak in Px. See [22] for more
details.

2.3. Confidence limits for tPAC estimates
To determine statistical significance of tPAC esti-

mates, surrogate data are generated following the ap-
proach of [22] and [26]. Here, the amplitude infor-
mation (A fA ) in each trial is first split into five blocks.
Then, these blocks are randomly permuted to yield a
surrogate dataset. Further, the phase and amplitude
information of the original data are shuffled randomly



Interdisciplinary Research Review 3

Table 1. The localisation measures for some members of the generalized Morse wavelets.

β

γ = 2 γ = 3 γ = 4
σt σω Aβ,γ P2

β,γ σt σω Aβ,γ P2
β,γ σt σω Aβ,γ P2

β,γ

1 1.732 0.337 0.583 2 2.062 0.258 0.531 3 2.287 0.228 0.522 4
3 1.483 0.347 0.514 6 2.194 0.229 0.501 9 2.706 0.186 0.503 12
4 1.464 0.348 0.510 8 2.280 0.220 0.501 12 2.884 0.174 0.503 16
6 1.446 0.350 0.506 12 2.418 0.207 0.500 18 3.168 0.158 0.502 24
10 1.433 0.351 0.503 20 2.616 0.191 0.500 30 3.581 0.140 0.501 40
20 1.423 0.352 0.502 40 2.923 0.171 0.500 60 4.243 0.118 0.501 80
30 1.420 0.353 0.501 60 3.123 0.160 0.500 90 4.691 0.107 0.500 120

Note: the formulas for σt, σ f are given in [23] and an example code is available at
http://site.google.com.site/aguiarconraria/joanasoares-wavelets/the-astoolbox.

Figure 1: Graphical overview of tPAC method. Details are stated in
text.

between the different frequency components [27]. For
each shuffled phase information obtained from the ith

frequency is randomly matched with the shuffled am-
plitude data from jth frequency, where i and j are pseu-
dorandom integers. The tPAC parameter estimates
within the 95th percentile of the surrogate distribution
are considered statistically significant.

2.4. Spectral and temporal resolution criteria

The test for spectral and temporal resolution is im-
portant in time-frequency analysis. Here, a measure
of resolution based on the Rayleigh criterion and the
study of [3] is used for performance evaluation of
wavelet time-resolved phase-amplitude coupling esti-
mates on each number of trials. Maximum resolution
in the spectral and temporal domains is defined as min-
imum resolved frequency or interval for which condi-
tions in Eq. (7) are true. Components x1 and x2 are
resolved if normalized amplitude of coupling strength
between the peaks B is less than half that of the lower
of A and C which are defined in Fig. 2 [3].

Resolved(x1, x2) =

{
True : B < 1

2 min(A,C)
False : Otherwise (7)

Additionally, we used Eq. (8), m, to recheck the per-
formance of tPAC for testing the stability of temporal
resolution. If m is high, tPAC measure is less stable in

Figure 2: Plot showing criterion for spectral and temporal resolu-
tion adapted from [3].

temporal resolution.

m =
1

N p − 1

N p−1∑
N p=1

|y2 − y1| (8)

where N p is number of peaks. y2 and y1 are defined in
Fig. 2.

3. Application and results

3.1. General observations
In order to test the performance of the tPAC method

using the generalized Morse wavelets, simulated data
with controlled PAC parameters were used. It was
generated using the method of [18] which was mod-
eled as

x(t) =

x fP (t)︷           ︸︸           ︷
K fP sin(2π fPt) +

x fA (t)︷              ︸︸              ︷
A fA (t) sin(2π fAt) +ε(t) (9)

where ε(t) is additive noise, and

A fA = 0.5[K fA (1−χ) sin(2π fPt) + Ā fA (t) +χ+ 1] (10)

where Ā fA is a constant that determines the maximal
amplitude of fA, K fP and K fA are constant which de-
termine the maximal amplitude of fP and fA, respec-
tively. The parameter χ ∈ [0, 1] controls the intensity
of the coupling: χ = 0 represents maximum coupling
while χ = 1 is no coupling.
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Here, the original signal was constructed with
length of 2 s, sampling rate of 1000 Hz. Multiple
modes of coupling in the study of [22] were applied
for this testing, which were: during the first half of the
signal (1 s), the phase of slow oscillation at fP1 = 9
Hz was coupled to the amplitude of a faster oscillation
at fA1 = 115 Hz. In the second half, the first coupling
mode was terminated and two other modes appeared
simultaneously with fP2 = 13 Hz, fA2 = 145 Hz, fP3 = 5
Hz, and fA3 = 87 Hz, respectively. The signal-to-noise
ratio was set to 6 dB, and the preferred coupling phase
in the three modes were ∠270, ∠0, ∠180, respectively.
The coupling parameter (χ) in each mode were 0.5,
0.2, and zero, respectively. The frequency ranges of
interest for fP and fA in the tPAC analysis were de-
fined linearly as ranges [1, 15] Hz and [40, 200] Hz,
respectively. The wavelet parameters, β was set to 3,
9 and 27. γ is 3. Here, tPAC analysis was calculated
using averages over 100 trials.

Fig. 3 illustrates the tPAC analysis outcome on the
synthesized data. Time-frequency maps reveal three
coupling modes which there are areas of significant
coupling between fA=115 Hz and fP=9 Hz during the
time of 0-1 s, and the significant coupling between
fA=145 Hz, fP=13 Hz and fA=87 Hz, fP=5 Hz oc-
curred during the time of 1-2 s, as seen in tPAC cou-
pling strength maps for fA and fP vs. time (Fig. 3(B)).
The dominant coupling in each modes varied accord-
ing to slow rhythm, for example, during the first half of
the signal (1 s duration), the signal was averaged time
locked to the troughs of the 9-Hz fP cycle. Chang-
ing the value of β changes the frequency resolution of
the corresponding wavelets. It is noticed that setting
β to low value, the frequency resolution is decreased.
Here, the results show that tPAC method is less ac-
curate in detecting the coupling for β = 3. tPAC re-
turns accurate results for setting value of β to 27, see
Fig. 3(B)(top) compared to Fig. 3(B)(bottom). Note
that time-frequency plots indicates values below the
95% confidence limit. Statistical significance test for
tPAC is described in 2.3.

From the results given in this section, it has proved
that tPAC method is more accurate in detecting the
coupling for setting β to higher value. β = 27 and γ =3
may lead to good performance for time-frequency
based tPAC analysis of simulated and experimental
data in next section. The datasets used in the next sec-
tion consist of different number of trials, which are 5,
15, 30, 50, and 100.

3.2. Results from simulated data

Fig. 4(A) shows examples of the time-frequency
tPAC analysis outcome on the simulated data calcu-
lated using averages over 5, 30, and 100 trials. The
time-frequency maps illustrate the time course of all
three coupling modes. The improved performances in
coupling detection can be observed when using larger
number of trials as clearly seen in Fig. 4(A)(middle

Figure 3: An example of tPAC analysis outcome on a synthesized
data. (A) A synthesized data including three different coupling
modes, see text for more details. (B) tPAC coupling strength maps
for fA and fP vs. time. The 95% confidence limit for tPAC time-
frequency plane is 0.47×10−3.

and right). Interestingly, time-frequency maps of tPAC
estimates from 30 trials and 100 trials seem to have a
similar time-frequency resolution. To evaluate the per-
formances of tPAC analysis in term of time-frequency
resolution, Fig. 4(B-C) and Table 2 and 3 are pre-
sented. Fig. 4(B) and (C) shows examples of time-
and frequency-varying normalized amplitude of cou-
pling strength formed by cross-sectioning the time-
frequency plane at three coupling modes. The plots
for tPAC analysis using 5 trials display more variabil-
ity in normalized amplitude of coupling strength when
compared to the others. Also, only tPAC analysis us-
ing 5 trials is not deemed to be resolved according to
above criteria. The plots of Fig. 4(B) and (C) show
that tPAC analysis using number of trials between 30
and 100 trials give generally good time-frequency res-
olution.
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Figure 4: Examples of tPAC analysis outcome on a synthesized data calculated using averages over 5, 30, and 100 trials. (A) Plots showing
time-varying normalized amplitude of coupling strength formed by cross-sectioning the time-frequency plane at three coupling modes, ( fP=5
Hz, fA=87 Hz), ( fP=9 Hz, fA=115 Hz), and ( fP=13 Hz, fA=145 Hz). (B) Plots showing frequency-varying normalized amplitude of coupling
strength formed by cross-sectioning the time-frequency plane at t=0.47 s and 1.25 s.

Table 2 lists the time resolution and the stability of
time resolution, m of each number of trials when ap-
plied to the same simulated dataset used in Section 3.1.
The table shows the maximum time resolution which
is defined as the minimum resolved interval between
adjacent bursts of signal using the method defined by
Eq. (7) and Fig. 2. It can be seen that the time resolu-
tion and m of tPAC analysis using 5 trials performed
slightly worse than using the other number of trials,
especially at frequencies of 5 and 13 Hz, whereas in
the other frequencies the time resolution and m do not
decrease by more than 1 ms and 0.05, respectively. Ta-
ble 3 lists the frequency resolution of tPAC analysis at
each number of trials. It is interesting to note that the
frequency resolution does not change by more than 5
Hz for any number of trials.

All results in this section would suggest that tPAC
analysis using larger number of trials (> 15 trials) of-
fers better joint time-frequency resolution.

3.3. Application to neurophysiology

The simulation procedure described above is re-
peated with experimental data. The data set analysed
in this section comes from the study of [28]. This data
set has been analysed and the novelty here is in ap-
plication of time varying measures. The two EMG

signals over the ankle flexor can be used as a sub-
stitute for pairs of motor unit recordings which can
identify any modulation in the functional coupling
during walking, and provide a basis for investigat-
ing the highly adaptive nature of human gait patterns
[28]. EMG recordings were digitally sampled at rate
of 1000 and 5000 Hz. Recordings were made over
a period of 500 seconds. A contact switch identified
heel strike. Thresholding of the heel strike (HS) record
provides a sequence of trigger times. These trigger
times provide a reference point within each step cy-
cle which is used to segment the data for undertaking
time-frequency analysis, where time is defined with
respect to heel contact. Further details of experiments
are given in [28]. The standard practice of rectifica-
tion of surface EMG signals has been a commonly
used pre-processing procedure that allows detection of
EMG coherence [2] and was used here. EMG-EMG
tPAC analysis was calculated using averages over 30-
, 50-, and 100-step cycles. All steps were segmented
into 1.04 s segments with 0.82 s before heel trigger
and 0.22 s after heel trigger, as seen in Fig. 5(A). The
time scale on time-frequency plots was labelled as 0-
1.04 s, heel triggers are at 0.82 s in these plots. Thus,
all plots cover swing phase including early, mid, and
late swing for each step cycle. The EMG-EMG tPAC
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Table 2. Temporal resolution and the stability of temporal resolution (in miliseconds; m) of each number of trials at each frequency.

Coupling
freqs (Hz)

Number of trials
5 15 30 50 100

5 147;0.18 113;0.07 98;0.05 10;0.04 10;0.03
9 6.7;0.09 6.5;0.07 6.5;0.07 6.2;0.05 6.2;0.02

13 11;0.12 5.3;0.08 4.7;0.07 4.7;0.06 4.7;0.03
87 12.5;0.02 11;0.01 11;0.01 11;0.01 11;0.01

115 7.7;0.08 6.7;0.05 6.7;0.05 6.70.02 6.7;0.01
145 4.8;0.06 4.4;0.05 4.4;0.03 4.4;0.03 4.4;0.01

Table 3. Spectral resolution (in Hz) of each number of trials.

Coupling
freqs (Hz)

Number of trials
5 15 30 50 100

5 2 2 2 2 2
9 5 2 2 2 2

13 5 3 2 2 2
87 40 40 35 35 35
115 70 55 50 50 50
145 60 60 60 60 60

analysis considered significant if above the 95% con-
fidence limits, calculated in section 2.3 for tPAC.

In this study, the rhythmic modulation of motor unit
activity, which reflects contributions from rhythmic
cortical activity, obtained from paired surface EMG
recordings over the ankle flexor TA is acquired with
the goal of studying and investigating neuronal cou-
pling mechanisms associated with locomotion. Fea-
tures from theta (4-8 Hz), alpha (8-12 Hz), low-beta
(12-20 Hz), high-beta (20-30 Hz), and gamma (30-45
Hz) frequency bands were extracted and analysed to
identify any modulations in the functional coupling
of motor units during walking. tPAC analysis was
therefore applied to the data with fP and fA frequency
ranges of interest, [4 − 8] Hz and [8 − 50] Hz, respec-
tively.

Examples of paired rectified EMG signals during
treadmill walking at 4 km/h and time-frequency tPAC
analysis from 3 subjects analysed from 30-, 50-, and
100-step cycles are shown in Fig. 5. Some features
shown on individual estimates are common across
all subjects as illustrated in Fig. 5(B)-(D). Time-
frequency maps show that coupling strength encom-
passes not only frequency components of motor unit
correlation between 8 Hz and 20 Hz [28, 29], but also
higher frequencies (>30 Hz) at ∼0.8 s (around heel
trigger). To summarise the correlation structure in
group of subjects, the individual estimates are com-
bined, or pooled, into a single representative estimate.
Table 4 summarises the pooled estimates in different
frequency bands. Although the results of tPAC present
significant coupling in all frequency bands, it is worth
noting that the coupling strength is concentrated in
distinct frequency bands, showing peak values at fP ∼

6 Hz coupled to fA ∼ 8-32 Hz. These strong coupling
strengths are observed during late swing around heel
contact (∼ 0.74-0.82 s). Here, tPAC analysis using 30-
, 50-, and 100-step cycles are able to detect similar
significant coupling in the time-frequency plane.

4. Conclusion

tPAC analysis is used to detect timing and frequen-
cies of coupled oscillatory components: a slower os-
cillation ( fP) and a faster oscillation ( fA), where the
amplitude of faster oscillations is coupled to the phase
of slower oscillation. This study has reviewed relevant
theoretical aspects of tPAC analysis using generalized
Morse wavelets. A particular subset of the general-
ized Morse wavelets, Airy wavelets (γ=3), are used in
this study because they have zero asymmetry in time
domain and are nearly symmetric in the frequency do-
main [6, 8]. Optimal value of β depends upon the re-
quirement of the analysis. tPAC method is more ac-
curate in detecting the coupling for setting β to higher
value, as seen in Section 3.1.

In Section 3.2, results from tPAC analysis of simu-
lated dataset, with an emphasis on small numbers of
trials (5, 15, 30, 50, and 100 trials), are obtained us-
ing Airy wavelet with β = 27. The results show that
performances in coupling detection improved with in-
creasing numbers of trials. Overall, the results from
tPAC analysis using number of trials more than 15 tri-
als offers better joint time-frequency resolution.

The method has been used to characterise the cor-
relation structure in experimental data consisting of
paired surface EMG signals during treadmill walking,
as seen in Section 3.3. The main finding is that tPAC
method is able to detect localised correlation in the
time-frequency plane. Our results suggest that tPAC
analysis gives useful information for investigation of
non-stationary neuronal coupling mechanisms under-
lying human treadmill locomotion, which involve only
short segments (or small numbers of steps) of EMG
recordings. The results indicate that theta oscillation
( fP ∼ 6 Hz) is strongly coupled to alpha and low-beta
rhythms ( fA ∼ 8-20 Hz) during late swing. In addi-
tion, significant coupling is between ∼ 6 Hz and ∼
20-45 Hz, specifically around heel contact. These fre-
quency components partly overlap with the frequency
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(A)

(B)

(C)

(D)

Figure 5: Examples of individual subjects analysed from 30-, 50-, and 100-step cycles, segmented into 1040 ms nonoverlapping epochs during
treadmill walking. The time scale on time-frequency plots is labelled as 0-1.04 s, heel triggers are at 0.82 s. Columns represent records while
rows represent (A) Examples of paired rectified surface EMG signals during treadmill walking, with dash red lines showing moments of heel
strike. (B)-(D) Individual time-frequency tPAC maps analysed from 30-, 50, and 100-step cycles, respectively.

Table 4. Pooled peak time-frequency for tPAC analyses of all subjects during treadmill walking.

Frequency
bands

Pooled tPAC estimates
30 trials 50 trials 100 trials

4-8 Hz 6 Hz, 0.75-0.79 s 6 Hz, 0.75-0.79 s 6 Hz, 0.75-0.79 s
8-12 Hz 8 Hz, 0.75-0.82 s 9 Hz, 0.78-0.79 s 9 Hz, 0.77-0.81 s

12-20 Hz 19 Hz, 0.74-0.79 s 19 Hz, 0.74-0.80 s 19 Hz, 0.74-0.80 s
20-30 Hz 24 Hz, 0.75-0.79 s 24 Hz, 0.76-0.79 s 24 Hz, 0.76-0.79 s
30-45 Hz 32 Hz, 0.77-0.80 s 32 Hz, 0.76-0.80 s 32 Hz, 0.76-0.80 s

ranges in the study of [30], who provide evidence in
investigating the functional coupling between the mo-
tor cortex and TA muscles at 8-12 and 24-40 Hz in
swing phase during treadmill walking. This finding is
consistent with their suggestion that the motor cortex
and the corticospinal tract contribute to the control of
walking.

Although this study is constrained to EMG acquired
during walking, this approach could be used to analyse
EMG data from different walking speeds. Also, it is
possible to apply tPAC analysis to other physiological
data.
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