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Abstract 

A web intrusion is a type of network intrusion that occurs frequently. A web log can be used to identify 
this type of intrusion. However, it tends to involve a huge amount of data which is difficult to be processed on a 
stand-alone computer. Moreover, this data is also an imbalanced dataset since the number of intrusion threats and 
normal accesses are extremely different. In order to handle a web intrusion, the two main topics that have to be 
involved include big data and an imbalanced problem. Therefore, this research applies an imbalanced technique 
based on big data to improve the performance on the web intrusion dataset. It is based on Apache Spark which 
is a popular open-source big data framework. The goal of this paper is to enhance the efficiency of intrusion 
prediction which is also categorized as an extremely imbalanced problem. The idea of minority class instance 
broadcasting is applied to improve the performance of prediction for web intrusion threats. According to the 
results, overall performance when applying an imbalanced technique with decision tree improves over a 
standard decision tree. For comparing by F-measure and geometric mean on 7 partitions, performances when 
applying an extremely imbalanced technique highly improve at 0.92 and 0.81 for F-measure and geometric mean 
respectively. For logistic regression, the application of an imbalanced technique does not show statistical 
improvement. 
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1. Introduction
  Nowadays, websites and internet applications have 
become part of everyday life. People exchange their 
public and personal data via internet without taking 
reasonable precautions. Due to the increase in client-
server applications, the number of intrusion incidents 
is increasing gradually. Thailand Computer 
Emergency Response Team (ThaiCERT) [1] reported 
that intrusion attempts and intrusions occurred more 
than 1,105 times in 2017. Intrusion attempts 
accounted for 26.5% of incidents which was the 
largest number of security threat attacks in a single 
year.  
 In Thailand, it is prescribed by law to require the 
recording of all internet activities. In Songkhla 
Rajabhat University, our case study location, we 
collected all network traffic logs generated by the web 
server and examined them to find any suspicious 
behaviour. A web traffic log is considered an instance 
of big data. Its volume is large and real-time 
increasingly and needs the huge storage. Analysing a 
log file of such large size will consume all processors 
and resources. In this case, using a personal computer 
might not be suitable. Moreover, data collecting from 
a web traffic log is also considered an extremely 
imbalanced dataset because there are usually a 

minimal number of intrusion threats compared to 
normal accesses. Thus, in order to detect an attack 
incident, it is necessary to use a classification 
algorithm designed to deal with an imbalanced 
dataset. This leads to this research, which focuses on 
the experiment of web intrusion detection system. 
One general detection approach is to examine the log 
files or resources to detect threats and point out the 
bad incidents. 
 In this paper, we apply techniques based on big 
data to tackle the web intrusion dataset. For the big 
data, Apache Spark [2] is included in the research, 
which provides several libraries for big data 
especially machine learning library (MLlib) [3]. 
MLlib consists of many methods for classification 
such as decision tree, logistic regression, etc. To deal 
with an extremely imbalanced dataset, we apply the 
idea of broadcast minority class instances from EUS-
ExtImbBD [4]. However, evolutionary under 
sampling (EUS) is omitted from this paper. Our 
assumption is only that the broadcast of minority class 
instances can improve the performance on accuracy of 
predicting an intrusion. In addition, this research aims 
to provide a simple solution to cope with extremely 
imbalanced big data as well as improve performance 
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Figure 1 Apache Spark [2] 

 
for the prediction of intrusion threats. 
 The paper is organized as follows. Section I is the 
introduction, while Section II is background. In 
Section III, the research methodology will be 
elaborated.  In Section IV, the model evaluation and 
experimental results will be presented. The last 
section offers the conclusion and recommendations 
for future work. 
 
2. Background and related work 
 In this section, the background topics related to 
this research are described. These topics include an 
imbalanced problem, classification in big data and 
techniques for handling imbalance in big data. 
 2.1. Classification in big data 
 Over the past few years, there has been increasing 
interest in big data. Such vast amounts of data were 
created every second, so the need for processing and 
analysing such data in quick and efficient ways 
becomes a serious problem. A number of tools and 
frameworks have been proposed to deal with big data 
problems, especially for Apache Hadoop and Apache 
Spark. 
 Apache Hadoop [5] is an open-source framework 
for distributing data to store on clusters. Hadoop has 
its own scalable file storage format called Hadoop 
Distributed File System (HDFS), which can store a 
very large data set separated on different clusters. It 
also has the MapReduce engine, a programming 
model that provides an environment to process large 
datasets with parallel and distributed algorithms. The 
Map phase will split the job into its computing nodes 
in order to process in parallel separately. In the 
Reduce phase, the master node will recall and merge 
all the small answers. According to its distributed 
infrastructure, all jobs will be processed and stored in 
its separated HDFS. Thus, the data transfer and 
performance of network interface can have an effect 
on the performance of the overall system. 
 Apache Spark is an open-source cluster processing 
framework for fast and flexible big data analysis. It 
has Resilient Distributed Dataset (RDD), which can 
perform in-memory processing. Apache Spark can 
work by relying on another cluster framework like 
Apache Hadoop or by just installing it as a stand-
alone. It also comes up with efficient data analysis 
tools such as MLlib, Spark Streaming and GraphX. 
 In this research, we intend to use the fast in-
memory processing ability of Apache Spark to help to 
process the log files. 

 
 2.2. An imbalanced problem 
 An imbalanced problem occurs when the input 
data of the classification method is not represented 
equally. The class of interest are typically smaller and 
might cause bias in the classification results. In this 
paper, the class having the larger number of instances 
is called the negative class, while the other class is 
called the positive class. This problem can be found 
frequently in the real world. However, most of 
traditional classifiers cannot handle this problem 
efficiently because they tend to predict instances as a 
negative class and misclassify positive class instances. 
Many researches have proposed techniques to solve 
this problem, which can be categorized into two main 
groups: data pre-processing techniques and 
algorithmic level techniques. 
 For pre-processing techniques, also known as 
sampling techniques, the idea of the techniques in this 
group involves increasing the number of positive class 
instances or decreasing the number of negative class 
instances, or both. These techniques attempt to 
balance the number of instances among classes. 
Examples of techniques in this group are SMOTE[6], 
Borderline-SMOTE [7], Safe-level SMOTE [8], 
ADASYN [9], MWMOTE [10], etc. 
 For algorithmic level techniques, they apply 
directly into the classifiers to compensate for the 
positive class instances. The classifiers can then 
enhance the performance of predicting positive class 
instances. Examples of techniques in this group are 
decision tree using asymmetric entropy [11], decision 
tree using off-centered entropy [12] and cost-sensitive 
boosting [13], among others. 
 2.3. Related works of handling imbalanced 
problem in big data 
 Imbalanced big data problems have received 
significant attention along with the growth of the data 
era. Therefore, many researches have proposed 
efficient modified algorithms to handle the 
imbalanced characteristics on big data. There are two 
popular strategies to cope with this problem: the 
application of random forest techniques and the use of 
sampling techniques.  
 For the first strategy, the idea of using multiple 
decision trees can gain advantages over distributed 
computing since each node can construct a small 
number of decision trees. The class having majority 
prediction from all decision trees is used as the 
prediction class for an instance. Therefore, these 
processes can be distributed to several computers to 
construct models and determine the prediction for 
each instance. The application of random forest for 
big data has been widely used in several researches 
such as [14] and [16]. In [14], Sarah Del Río et al. 
used a random forest classifier on MapReduce with a 
machine learning library on Hadoop called Mahout 
[15]. In [16], random forest was also implemented, 
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showing the success of using random oversampling 
on a big data problem.  
 For the second strategy, a sampling technique, 
especially under sampling, is one of the popular 
techniques used on big data. The idea of under 
sampling reduces the number of instances to be 
processed. Accordingly, it can improve the 
performance of processing time when compared with 
traditional techniques, which use all instances. An 
example of using under sampling to handle 
imbalanced problem can be seen in [4]. The author 
proposed EUS-ExtImbBD, which is based on the 
evaluation under sampling technique (EUS) [17]. 
EUS-ExtImbBD applies an evolutionary under 
sampling technique on big data using Apache Spark. 
This research focuses on an extremely imbalanced 
dataset, in which the imbalance ratio (IR) is very high. 
It uses the idea of broadcasting minority class 
instances to all partitions of all nodes instead of 
separating them to all partitions. Since the number of 
minority class instances is not reduced over multiple 
nodes, they can increase the performance on 
prediction of minority class instances in the 
distributed system. For using an under sampling 
technique, EUS-ExtImbBD can yield satisfactory 
processing time on big data. 
 In this research, we apply the idea of broadcast 
minority class instances from EUS-ExtImbBD to 
handle a web intrusion dataset. This dataset has a high 
imbalance ratio which is also an extremely 
imbalanced dataset. In order to provide a simple 
design for handling this type of dataset, MLLib of 
Apache Spark is used to construct models for 
classification instead of using EUS. By our 
assumption, using only broadcast minority class 
instances can improve the performance of prediction for 
intrusion threats in our web intrusion dataset.  
 
3. Research methodology  
 For the web intrusion dataset, it can be tackled by 
using a traditional technique without applying big 
data.  However, there are some limitations on 
computational performance which requires a high 
performance computer server to process. Moreover, it 
is hardly able to be integrated with an intrusion 
detection system in the future. Therefore, using big 
data technology, which provides a distributed computing 
environment, can eliminate this obstacle occurring in 
the standard technique. Apache Spark is used in this 
paper since it is one of the famous frameworks based 
on big data technology called Hadoop. The appli-
cation of Apache Spark for the web intrusion dataset 
is described in the following steps.  
 3.1 Web intrusion dataset 
 In this step, the web log file from the date that has 
been informed as intrusions by the Office of 
Information Technology Administration for Edu-
cational Development [18] (called UniNet) about the 
intrusion is used for analysis. It is transformed into a 

dataset structure. The web log file consists of 8 parts 
comprising 1) IP address, 2) user name, 3) time-
stamp, 4) access request, 5) status code, 6) the number 
of transferred bytes, 7) referrer URL and 8) user 
agent. An example of a web log file is below. 
 

 
 
For the first transformation, the attributes in the 
dataset remain the same as in the web log file. Each 
record in the dataset is then labelled by an expert to 
indicate an intrusion threat. This dataset consists of 
145,353 records, of which 144,841 records are normal 
accesses and 512 records are intrusions. The 
imbalance ratio (IR) of this dataset is 283.89, meaning 
it is an extremely imbalanced dataset. Therefore, it is 
suitable to handle using an imbalanced technique 
rather than a standard technique. 
 3.2 Data preparation 
 For data preparation, there are several transforma-
tions to prepare the dataset. First, an access request is 
transformed by whether it contains specific directory 
names or filename. Second, the location of an IP 
address is used to replace the IP address itself. Third, 
all categorical attributes are transformed by using 
one-hot encoding scheme in order to process by using 
MLlib in Spark. After these transformations, the size 
of this dataset will be much larger than the original. 
Its size is larger than one gigabyte. By applying it 
with big data, it can process this dataset easier than on 
a computer.  
 3.3 Feature selection 
 From the data preparation step, the number of 
attributes markedly increases. By using the large number 
of attributes, it consumes a lot of time to process the 
dataset. Moreover, it may lead to the data over fitting. 
Hence, chi-squared feature selection in MLlib is used 
to select important attributes that are relevant for the 
prediction of web intrusions. Therefore, there are 300 
attributes in the dataset after this process.  
 3.4 Applying the imbalanced technique on Apache 
Spark 
 Since the web intrusion dataset used in the research 
is an extremely imbalanced dataset, the idea of 
broadcast minority class instances from EUS-ExtImbBD 
is applied. This design takes advantage of distributed 
computing to apply multiple nodes on multiple 
computers to process the task. In order to evaluate the 
models constructed by this process, k-fold cross-
validation is included. The following algorithm shows 
the steps for processing this dataset on Apache Spark. 
There are two main functions of Apache Spark used 
in the algorithm which are map partition and 
broadcast. For map partition, it is applied in tree 
construction and model evaluation, which makes it 
able to distribute across multiple nodes. For 
broadcast, it prevents a decrease in the number of 
positive class instances over multiple partitions. The 
lower number of positive  
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Figure 2 Training workflow 
 
lower number of positive instances causes a classifier 
to be unable to predict a positive class instance 
correctly. 
 

 
 
 This process can be split into two sub processes: 
training process and testing process. The workflow of 
the training process is shown in Figure 2. The training 
dataset is separated by class into two sets of instances: 
negative training instances and positive training 
instances. The negative training instances are split and 
distributed into each partition (mapper). Therefore, 
each partition contains a different set of negative 
training instances. For positive training instances, they 
are broadcasted to all partitions. Hence, all partitions 
have the same set of positive training instances. Each 
mapper constructs a model from the combined 
datasets of positive training instances and negative 
training instances in its partition.  Then all models are 
aggregated together and used in the testing process. 
 In this research, MLlib is used to construct a 
model. There are three types of models: a decision 
tree, logistic regression and random forest. The details 
of model construction are shown in the following 
algorithm. 
 

 
 

For the testing process, the testing dataset is split and 
distributed into each partition. Hence, each partition 
processes a different set of both positive class 
instances and negative class instances. All models 
which are the results from training process are 
broadcasted to all partitions. 
 For each partition, an instance is predicted by 
using a majority vote of all models. The results from 
the prediction are used to create confusion matrix. 
The models are evaluated by using accuracy, pre-
cision, recall, F-measure and geometric mean. The 
following algorithm shows the details for model 
evaluation. 
 
 
 
 
 
 

 
 
 The detail for model evaluation and experiment 
results are described in the next section 
 
4. Model evaluation and experimental results 
 4.1 Model evaluation 
 For model evaluation, they are evaluated by using 
3-fold validation. The results are compared by using 
accuracy, precision, recall, F-measure and geometric 
mean. In order to compute these measures, the 
relevant terms have to be defined first which are true 
positive (TP), true negative (TN), false positive (FP) 
and false negative (FN). TP denotes the number of  
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Figure 3 Testing workflow 
 
 

positive class instances which are predicted as positive 
class instances. TN denotes the number of negative 
class instances which are predicted as negative class 
instances. FP denotes the number of negative class 
instances which are predicted as positive class instances. 
FN denotes the number of positive class instances 
which are predicted as negative class instances. In the 
Equation (1) and Equation (2), they present the 
formulae of precision and recall respectively.  
 
     Precision = ( )+TPT / FPP                            (1) 

 
     Recall = ( )+TP / TP FN                           (2) 
 
 In this paper, we concentrate on prediction of 
intrusion threats. Therefore, F-measure and geometric 
mean (g-mean) are suitable for our scenario. In 
Equation (3), it presents the formula of F-measure. In 
order to balance between precision and recall, the β is 
set as 1. For g-mean, it is defined by combining of 
precision and recall. Its formula is shown in the 
Equation (4). 
 

F-measure = 
2

2
(1 ) ( )+ ⋅ ⋅

⋅ +
Recall Precision

Recall Precision
β
β

       (3) 

 

Geometric mean (g-mean) = ×
+ +

TP TN
TP FN TN FP

 (4) 

 
 The results comparing by using these measures are 
presented in the next section. 
 
 4.2 Experimental results   
 All processes are implemented by using Scala. 
The experiments run on a cloud service of Google 
cloud platform called Cloud Dataproc [19] which 

provides a service for Apache Spark and Hadoop. The 
service used in the experiments consists of 1 master 
node (8 vCPU and 52 GB memory) and 7 worker 
nodes (2 vCPU and 13 GB memory).  
 The experiment results in Figure 4 to Figure 6 
present the results of using decision tree (abbreviated 
as DT), decision tree with imbalanced technique 
(abbreviated as IM_DT), linear regression (abbreviated 
as LR), linear regression with imbalanced technique 
(abbreviated as IM_LR) and random forest (abbreviated 
as RF). DT, IM_DT, LR and IM_LR are presented in 
a bar graph for comparing the results of the different 
number of partitions (1 to 7). For RF, the number of 
trees was fixed instead of the number of partitions. 
Since RF is created with a different setting, 
comparison with RF cannot be done directly. 
Therefore, the result of RF is presented in a different 
style (line graph).  
 For the first result in Figure 4, it presents a 
comparison of DT, IM_DT, LR, IM_LR and RF based 
on accuracy. It shows that the result of decision tree 
using imbalanced technique overcomes a standard 
decision tree especially in the number of partitions 
larger than one. For the result of logistic regression, it 
does not show significant difference overall between 
using standard logistic regression and logistic 
regression using imbalanced technique. 
 For the second result in Figure 5 (a), it shows the 
comparison of DT, IM_DT, LR, IM_LR and RF 
based on precision. It shows that the result of decision 
tree using the imbalanced technique overcomes a 
standard decision tree, especially when the number of 
partitions is larger than one. For the result of logistic 
regression, it does not show significant difference 
overall between using a standard logistic regression 
and logistic regression using the imbalanced technique. 
For the third result in Figure 5 (b), it shows the 
comparison by recall. Both decision tree and logistic  
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Figure 4 The experimental result comparing by accuracy 

 
   

 
(a) precision 

 
(b) recall 

Figure 5 The experimental result comparing by (a) precision and (b) recall 
 
 

 
(a) F-measure 

 
(b) g-mean 

Figure 6 The experimental result comparing by (a) F-measure and (b) g-mean 
 
 

 
Figure 7 The experimental result comparing by processing times 

 
regression using the imbalanced technique provide the 
improved performances compared to standard 
techniques. 
 The fourth and fifth results in Figure 6 show a 
comparison of DT, IM_DT, LR, IM_LR and RF by F-
measure and g-mean. Both F-measure and g-mean 
provide similar results. The result of decision tree using 
the imbalanced technique is significantly enhanced 
compared to using a standard decision tree for any 
number of partitions. The results of logistic regression 

using the imbalanced technique is slightly improved 
compared to standard logistic regression.  
 The sixth result in Figure 7 presents a comparison 
of processing times for DT, IM_DT, LR, IM_LR and 
RF. The processing times for all seem to provide a 
minimum processing time at around 2-3 partitions. The 
result of decision tree using the imbalanced technique 
consumes less overall processing time than a standard 
decision tree. The result of logistic regression using 
the imbalanced technique shows slightly higher 
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processing time is used compared to a standard 
logistic regression. 
 Overall, the result of decision tree using the 
imbalanced technique is significantly improved over a 
standard decision tree as compared by F-measure and 
g-mean, which are widely used for imbalanced 
datasets. The processing time for decision tree using 
the imbalanced technique also improves when 
compared to a standard decision tree. For logistic 
regression, using the imbalanced technique does not 
seem to significantly enhance the result as compared by 
all measures. Therefore, positive instance broadcasting 
alone is probably not sufficient for improving an 
extremely imbalanced dataset using logistic regression. 
For random forest, it applies sampling methods which 
yield the least processing time compared with others. It 
also trades off performance with performance on 
accuracy, precision, recall, F-measure and g-mean.  
 
6. Conclusion and future work 
 In this paper, big data is applied with a web 
instruction dataset to improve the performance of 
classification. Since the preparation process increases 
the size of the dataset to more than a gigabyte, it is 
difficult to process this task on a stand-alone 
computer. Therefore, Apache Spark based on big data 
is used to handle this dataset. In addition, this dataset 
is also extremely imbalanced. This research applies 
the use of MLlib on Apache Spark to improve 
performance for the prediction of an imbalanced 
dataset. The idea of broadcasting positive instances 
from EUS-ExtImbBD is used with MLlib to handle 
the web instruction dataset.  
 According the results, a decision tree using an 
imbalanced technique shows significant overall 
improvement. Therefore, this technique is suitable for 
a decision tree. However, it does not show strong 
improvement for logistic regression. To deal with an 
extremely imbalanced dataset using logistic regression, 
integrating other techniques with positive instance 
broadcasting is probably required. In conclusion, the 
technique presented in this paper can be applied 
effectively with decision tree to improve prediction 
for an extremely imbalanced dataset.  
 In future work, we aim to integrate this technique to 
a real-time system. Therefore, the application of a 
sampling method has to be included to reduce 
processing time. 
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