
Volume 13, Number 2, Pages 29 - 36

*Corresponding author; e-mail: kesinee.bo@skru.ac.th

Applying an extremely imbalanced technique on big data:
A case study of web intrusion

Kesinee Boonchuay1,*, Sureerat Kaewkeeree2, and Youppadee Intasorn1
1Computer Department, Faculty of Science and Technology, Songkhla Rajabhat University,

Songkhla 90000, Thailand
2Business Computer Program, Faculty of Management Sciences, Songkhla Rajabhat University,

Songkhla 90000, Thailand

Abstract

A web intrusion is a type of network intrusion that occurs frequently. A web log can be used to identify
this type of intrusion. However, it tends to involve a huge amount of data which is difficult to be processed on a
stand-alone computer. Moreover, this data is also an imbalanced dataset since the number of intrusion threats and
normal accesses are extremely different. In order to handle a web intrusion, the two main topics that have to be
involved include big data and an imbalanced problem. Therefore, this research applies an imbalanced technique
based on big data to improve the performance on the web intrusion dataset. It is based on Apache Spark which
is a popular open-source big data framework. The goal of this paper is to enhance the efficiency of intrusion
prediction which is also categorized as an extremely imbalanced problem. The idea of minority class instance
broadcasting is applied to improve the performance of prediction for web intrusion threats. According to the
results, overall performance when applying an imbalanced technique with decision tree improves over a
standard decision tree. For comparing by F-measure and geometric mean on 7 partitions, performances when
applying an extremely imbalanced technique highly improve at 0.92 and 0.81 for F-measure and geometric mean
respectively. For logistic regression, the application of an imbalanced technique does not show statistical
improvement.

Keywords: classification, imbalance, big data, Apache Spark, web intrusion

Article history: Received 22 March 2018, Accepted 10 April 2018

1. Introduction
 Nowadays, websites and internet applications have
become part of everyday life. People exchange their
public and personal data via internet without taking
reasonable precautions. Due to the increase in client-
server applications, the number of intrusion incidents
is increasing gradually. Thailand Computer
Emergency Response Team (ThaiCERT) [1] reported
that intrusion attempts and intrusions occurred more
than 1,105 times in 2017. Intrusion attempts
accounted for 26.5% of incidents which was the
largest number of security threat attacks in a single
year.
 In Thailand, it is prescribed by law to require the
recording of all internet activities. In Songkhla
Rajabhat University, our case study location, we
collected all network traffic logs generated by the web
server and examined them to find any suspicious
behaviour. A web traffic log is considered an instance
of big data. Its volume is large and real-time
increasingly and needs the huge storage. Analysing a
log file of such large size will consume all processors
and resources. In this case, using a personal computer
might not be suitable. Moreover, data collecting from
a web traffic log is also considered an extremely
imbalanced dataset because there are usually a

minimal number of intrusion threats compared to
normal accesses. Thus, in order to detect an attack
incident, it is necessary to use a classification
algorithm designed to deal with an imbalanced
dataset. This leads to this research, which focuses on
the experiment of web intrusion detection system.
One general detection approach is to examine the log
files or resources to detect threats and point out the
bad incidents.
 In this paper, we apply techniques based on big
data to tackle the web intrusion dataset. For the big
data, Apache Spark [2] is included in the research,
which provides several libraries for big data
especially machine learning library (MLlib) [3].
MLlib consists of many methods for classification
such as decision tree, logistic regression, etc. To deal
with an extremely imbalanced dataset, we apply the
idea of broadcast minority class instances from EUS-
ExtImbBD [4]. However, evolutionary under
sampling (EUS) is omitted from this paper. Our
assumption is only that the broadcast of minority class
instances can improve the performance on accuracy of
predicting an intrusion. In addition, this research aims
to provide a simple solution to cope with extremely
imbalanced big data as well as improve performance

 DOI 10.14456/jtir.2018.16

 30 Vol. 13 No. 2 March – April 2018

Figure 1 Apache Spark [2]

for the prediction of intrusion threats.
 The paper is organized as follows. Section I is the
introduction, while Section II is background. In
Section III, the research methodology will be
elaborated. In Section IV, the model evaluation and
experimental results will be presented. The last
section offers the conclusion and recommendations
for future work.

2. Background and related work
 In this section, the background topics related to
this research are described. These topics include an
imbalanced problem, classification in big data and
techniques for handling imbalance in big data.
 2.1. Classification in big data
 Over the past few years, there has been increasing
interest in big data. Such vast amounts of data were
created every second, so the need for processing and
analysing such data in quick and efficient ways
becomes a serious problem. A number of tools and
frameworks have been proposed to deal with big data
problems, especially for Apache Hadoop and Apache
Spark.
 Apache Hadoop [5] is an open-source framework
for distributing data to store on clusters. Hadoop has
its own scalable file storage format called Hadoop
Distributed File System (HDFS), which can store a
very large data set separated on different clusters. It
also has the MapReduce engine, a programming
model that provides an environment to process large
datasets with parallel and distributed algorithms. The
Map phase will split the job into its computing nodes
in order to process in parallel separately. In the
Reduce phase, the master node will recall and merge
all the small answers. According to its distributed
infrastructure, all jobs will be processed and stored in
its separated HDFS. Thus, the data transfer and
performance of network interface can have an effect
on the performance of the overall system.
 Apache Spark is an open-source cluster processing
framework for fast and flexible big data analysis. It
has Resilient Distributed Dataset (RDD), which can
perform in-memory processing. Apache Spark can
work by relying on another cluster framework like
Apache Hadoop or by just installing it as a stand-
alone. It also comes up with efficient data analysis
tools such as MLlib, Spark Streaming and GraphX.
 In this research, we intend to use the fast in-
memory processing ability of Apache Spark to help to
process the log files.

 2.2. An imbalanced problem
 An imbalanced problem occurs when the input
data of the classification method is not represented
equally. The class of interest are typically smaller and
might cause bias in the classification results. In this
paper, the class having the larger number of instances
is called the negative class, while the other class is
called the positive class. This problem can be found
frequently in the real world. However, most of
traditional classifiers cannot handle this problem
efficiently because they tend to predict instances as a
negative class and misclassify positive class instances.
Many researches have proposed techniques to solve
this problem, which can be categorized into two main
groups: data pre-processing techniques and
algorithmic level techniques.
 For pre-processing techniques, also known as
sampling techniques, the idea of the techniques in this
group involves increasing the number of positive class
instances or decreasing the number of negative class
instances, or both. These techniques attempt to
balance the number of instances among classes.
Examples of techniques in this group are SMOTE[6],
Borderline-SMOTE [7], Safe-level SMOTE [8],
ADASYN [9], MWMOTE [10], etc.
 For algorithmic level techniques, they apply
directly into the classifiers to compensate for the
positive class instances. The classifiers can then
enhance the performance of predicting positive class
instances. Examples of techniques in this group are
decision tree using asymmetric entropy [11], decision
tree using off-centered entropy [12] and cost-sensitive
boosting [13], among others.
 2.3. Related works of handling imbalanced
problem in big data
 Imbalanced big data problems have received
significant attention along with the growth of the data
era. Therefore, many researches have proposed
efficient modified algorithms to handle the
imbalanced characteristics on big data. There are two
popular strategies to cope with this problem: the
application of random forest techniques and the use of
sampling techniques.
 For the first strategy, the idea of using multiple
decision trees can gain advantages over distributed
computing since each node can construct a small
number of decision trees. The class having majority
prediction from all decision trees is used as the
prediction class for an instance. Therefore, these
processes can be distributed to several computers to
construct models and determine the prediction for
each instance. The application of random forest for
big data has been widely used in several researches
such as [14] and [16]. In [14], Sarah Del Río et al.
used a random forest classifier on MapReduce with a
machine learning library on Hadoop called Mahout
[15]. In [16], random forest was also implemented,

Journal of Thai Interdisciplinary Research 31

showing the success of using random oversampling
on a big data problem.
 For the second strategy, a sampling technique,
especially under sampling, is one of the popular
techniques used on big data. The idea of under
sampling reduces the number of instances to be
processed. Accordingly, it can improve the
performance of processing time when compared with
traditional techniques, which use all instances. An
example of using under sampling to handle
imbalanced problem can be seen in [4]. The author
proposed EUS-ExtImbBD, which is based on the
evaluation under sampling technique (EUS) [17].
EUS-ExtImbBD applies an evolutionary under
sampling technique on big data using Apache Spark.
This research focuses on an extremely imbalanced
dataset, in which the imbalance ratio (IR) is very high.
It uses the idea of broadcasting minority class
instances to all partitions of all nodes instead of
separating them to all partitions. Since the number of
minority class instances is not reduced over multiple
nodes, they can increase the performance on
prediction of minority class instances in the
distributed system. For using an under sampling
technique, EUS-ExtImbBD can yield satisfactory
processing time on big data.
 In this research, we apply the idea of broadcast
minority class instances from EUS-ExtImbBD to
handle a web intrusion dataset. This dataset has a high
imbalance ratio which is also an extremely
imbalanced dataset. In order to provide a simple
design for handling this type of dataset, MLLib of
Apache Spark is used to construct models for
classification instead of using EUS. By our
assumption, using only broadcast minority class
instances can improve the performance of prediction for
intrusion threats in our web intrusion dataset.

3. Research methodology
 For the web intrusion dataset, it can be tackled by
using a traditional technique without applying big
data. However, there are some limitations on
computational performance which requires a high
performance computer server to process. Moreover, it
is hardly able to be integrated with an intrusion
detection system in the future. Therefore, using big
data technology, which provides a distributed computing
environment, can eliminate this obstacle occurring in
the standard technique. Apache Spark is used in this
paper since it is one of the famous frameworks based
on big data technology called Hadoop. The appli-
cation of Apache Spark for the web intrusion dataset
is described in the following steps.
 3.1 Web intrusion dataset
 In this step, the web log file from the date that has
been informed as intrusions by the Office of
Information Technology Administration for Edu-
cational Development [18] (called UniNet) about the
intrusion is used for analysis. It is transformed into a

dataset structure. The web log file consists of 8 parts
comprising 1) IP address, 2) user name, 3) time-
stamp, 4) access request, 5) status code, 6) the number
of transferred bytes, 7) referrer URL and 8) user
agent. An example of a web log file is below.

For the first transformation, the attributes in the
dataset remain the same as in the web log file. Each
record in the dataset is then labelled by an expert to
indicate an intrusion threat. This dataset consists of
145,353 records, of which 144,841 records are normal
accesses and 512 records are intrusions. The
imbalance ratio (IR) of this dataset is 283.89, meaning
it is an extremely imbalanced dataset. Therefore, it is
suitable to handle using an imbalanced technique
rather than a standard technique.
 3.2 Data preparation
 For data preparation, there are several transforma-
tions to prepare the dataset. First, an access request is
transformed by whether it contains specific directory
names or filename. Second, the location of an IP
address is used to replace the IP address itself. Third,
all categorical attributes are transformed by using
one-hot encoding scheme in order to process by using
MLlib in Spark. After these transformations, the size
of this dataset will be much larger than the original.
Its size is larger than one gigabyte. By applying it
with big data, it can process this dataset easier than on
a computer.
 3.3 Feature selection
 From the data preparation step, the number of
attributes markedly increases. By using the large number
of attributes, it consumes a lot of time to process the
dataset. Moreover, it may lead to the data over fitting.
Hence, chi-squared feature selection in MLlib is used
to select important attributes that are relevant for the
prediction of web intrusions. Therefore, there are 300
attributes in the dataset after this process.
 3.4 Applying the imbalanced technique on Apache
Spark
 Since the web intrusion dataset used in the research
is an extremely imbalanced dataset, the idea of
broadcast minority class instances from EUS-ExtImbBD
is applied. This design takes advantage of distributed
computing to apply multiple nodes on multiple
computers to process the task. In order to evaluate the
models constructed by this process, k-fold cross-
validation is included. The following algorithm shows
the steps for processing this dataset on Apache Spark.
There are two main functions of Apache Spark used
in the algorithm which are map partition and
broadcast. For map partition, it is applied in tree
construction and model evaluation, which makes it
able to distribute across multiple nodes. For
broadcast, it prevents a decrease in the number of
positive class instances over multiple partitions. The
lower number of positive

 32 Vol. 13 No. 2 March – April 2018

Figure 2 Training workflow

lower number of positive instances causes a classifier
to be unable to predict a positive class instance
correctly.

 This process can be split into two sub processes:
training process and testing process. The workflow of
the training process is shown in Figure 2. The training
dataset is separated by class into two sets of instances:
negative training instances and positive training
instances. The negative training instances are split and
distributed into each partition (mapper). Therefore,
each partition contains a different set of negative
training instances. For positive training instances, they
are broadcasted to all partitions. Hence, all partitions
have the same set of positive training instances. Each
mapper constructs a model from the combined
datasets of positive training instances and negative
training instances in its partition. Then all models are
aggregated together and used in the testing process.
 In this research, MLlib is used to construct a
model. There are three types of models: a decision
tree, logistic regression and random forest. The details
of model construction are shown in the following
algorithm.

For the testing process, the testing dataset is split and
distributed into each partition. Hence, each partition
processes a different set of both positive class
instances and negative class instances. All models
which are the results from training process are
broadcasted to all partitions.
 For each partition, an instance is predicted by
using a majority vote of all models. The results from
the prediction are used to create confusion matrix.
The models are evaluated by using accuracy, pre-
cision, recall, F-measure and geometric mean. The
following algorithm shows the details for model
evaluation.

 The detail for model evaluation and experiment
results are described in the next section

4. Model evaluation and experimental results
 4.1 Model evaluation
 For model evaluation, they are evaluated by using
3-fold validation. The results are compared by using
accuracy, precision, recall, F-measure and geometric
mean. In order to compute these measures, the
relevant terms have to be defined first which are true
positive (TP), true negative (TN), false positive (FP)
and false negative (FN). TP denotes the number of

Journal of Thai Interdisciplinary Research 33

Figure 3 Testing workflow

positive class instances which are predicted as positive
class instances. TN denotes the number of negative
class instances which are predicted as negative class
instances. FP denotes the number of negative class
instances which are predicted as positive class instances.
FN denotes the number of positive class instances
which are predicted as negative class instances. In the
Equation (1) and Equation (2), they present the
formulae of precision and recall respectively.

 Precision = ()+TPT / FPP (1)

 Recall = ()+TP / TP FN (2)

 In this paper, we concentrate on prediction of
intrusion threats. Therefore, F-measure and geometric
mean (g-mean) are suitable for our scenario. In
Equation (3), it presents the formula of F-measure. In
order to balance between precision and recall, the β is
set as 1. For g-mean, it is defined by combining of
precision and recall. Its formula is shown in the
Equation (4).

F-measure =
2

2
(1) ()+ ⋅ ⋅

⋅ +
Recall Precision

Recall Precision
β
β

 (3)

Geometric mean (g-mean) = ×
+ +

TP TN
TP FN TN FP

 (4)

 The results comparing by using these measures are
presented in the next section.

 4.2 Experimental results
 All processes are implemented by using Scala.
The experiments run on a cloud service of Google
cloud platform called Cloud Dataproc [19] which

provides a service for Apache Spark and Hadoop. The
service used in the experiments consists of 1 master
node (8 vCPU and 52 GB memory) and 7 worker
nodes (2 vCPU and 13 GB memory).
 The experiment results in Figure 4 to Figure 6
present the results of using decision tree (abbreviated
as DT), decision tree with imbalanced technique
(abbreviated as IM_DT), linear regression (abbreviated
as LR), linear regression with imbalanced technique
(abbreviated as IM_LR) and random forest (abbreviated
as RF). DT, IM_DT, LR and IM_LR are presented in
a bar graph for comparing the results of the different
number of partitions (1 to 7). For RF, the number of
trees was fixed instead of the number of partitions.
Since RF is created with a different setting,
comparison with RF cannot be done directly.
Therefore, the result of RF is presented in a different
style (line graph).
 For the first result in Figure 4, it presents a
comparison of DT, IM_DT, LR, IM_LR and RF based
on accuracy. It shows that the result of decision tree
using imbalanced technique overcomes a standard
decision tree especially in the number of partitions
larger than one. For the result of logistic regression, it
does not show significant difference overall between
using standard logistic regression and logistic
regression using imbalanced technique.
 For the second result in Figure 5 (a), it shows the
comparison of DT, IM_DT, LR, IM_LR and RF
based on precision. It shows that the result of decision
tree using the imbalanced technique overcomes a
standard decision tree, especially when the number of
partitions is larger than one. For the result of logistic
regression, it does not show significant difference
overall between using a standard logistic regression
and logistic regression using the imbalanced technique.
For the third result in Figure 5 (b), it shows the
comparison by recall. Both decision tree and logistic

 34 Vol. 13 No. 2 March – April 2018

Figure 4 The experimental result comparing by accuracy

(a) precision

(b) recall

Figure 5 The experimental result comparing by (a) precision and (b) recall

(a) F-measure

(b) g-mean

Figure 6 The experimental result comparing by (a) F-measure and (b) g-mean

Figure 7 The experimental result comparing by processing times

regression using the imbalanced technique provide the
improved performances compared to standard
techniques.
 The fourth and fifth results in Figure 6 show a
comparison of DT, IM_DT, LR, IM_LR and RF by F-
measure and g-mean. Both F-measure and g-mean
provide similar results. The result of decision tree using
the imbalanced technique is significantly enhanced
compared to using a standard decision tree for any
number of partitions. The results of logistic regression

using the imbalanced technique is slightly improved
compared to standard logistic regression.
 The sixth result in Figure 7 presents a comparison
of processing times for DT, IM_DT, LR, IM_LR and
RF. The processing times for all seem to provide a
minimum processing time at around 2-3 partitions. The
result of decision tree using the imbalanced technique
consumes less overall processing time than a standard
decision tree. The result of logistic regression using
the imbalanced technique shows slightly higher

Journal of Thai Interdisciplinary Research 35

processing time is used compared to a standard
logistic regression.
 Overall, the result of decision tree using the
imbalanced technique is significantly improved over a
standard decision tree as compared by F-measure and
g-mean, which are widely used for imbalanced
datasets. The processing time for decision tree using
the imbalanced technique also improves when
compared to a standard decision tree. For logistic
regression, using the imbalanced technique does not
seem to significantly enhance the result as compared by
all measures. Therefore, positive instance broadcasting
alone is probably not sufficient for improving an
extremely imbalanced dataset using logistic regression.
For random forest, it applies sampling methods which
yield the least processing time compared with others. It
also trades off performance with performance on
accuracy, precision, recall, F-measure and g-mean.

6. Conclusion and future work
 In this paper, big data is applied with a web
instruction dataset to improve the performance of
classification. Since the preparation process increases
the size of the dataset to more than a gigabyte, it is
difficult to process this task on a stand-alone
computer. Therefore, Apache Spark based on big data
is used to handle this dataset. In addition, this dataset
is also extremely imbalanced. This research applies
the use of MLlib on Apache Spark to improve
performance for the prediction of an imbalanced
dataset. The idea of broadcasting positive instances
from EUS-ExtImbBD is used with MLlib to handle
the web instruction dataset.
 According the results, a decision tree using an
imbalanced technique shows significant overall
improvement. Therefore, this technique is suitable for
a decision tree. However, it does not show strong
improvement for logistic regression. To deal with an
extremely imbalanced dataset using logistic regression,
integrating other techniques with positive instance
broadcasting is probably required. In conclusion, the
technique presented in this paper can be applied
effectively with decision tree to improve prediction
for an extremely imbalanced dataset.
 In future work, we aim to integrate this technique to
a real-time system. Therefore, the application of a
sampling method has to be included to reduce
processing time.

Acknowledgements
 The authors would like to acknowledge the
Faculty of Science and Technology, Songkhla Rajabhat
University, Thailand for supporting this research. We
also thank the computer center of Songkhla Rajabhat
University for providing log files.

References
[1] Thailand Computer Emergency Response Team

(ThaiCERT) n.d. http://www.thaicert.or.th
(accessed May 18, 2017).

[2] Spark A. Apache Spark: Lightning-fast cluster
computing. Retrieved from Apache Spark:
http://spark. apache. org; 2016.

[3] Meng X, Bradley J, Yavuz B, Sparks E,
Venkataraman S, Liu D, et al. Mllib: Machine
learning in apache spark. J Mach Learn Res
2016;17:1235–1241.

[4] Triguero I, Galar M, Merino D, Maillo J, Bustince
H, Herrera F. Evolutionary undersampling for
extremely imbalanced big data classification
under apache spark. Evol. Comput. CEC 2016
IEEE Congr. On, IEEE; 2016.p.640–647.

[5] Apache Hadoop. Apache Hadoop 2017.
http://hadoop.apache.org/.

[6] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer
WP. SMOTE: Synthetic minority over-sampling
technique. J Artif Int Res 2002;16:321–357.

[7] Han H, Wang W-Y, Mao B-H. Borderline-
SMOTE: A new Over-Sampling method in
imbalanced data sets learning. In: Huang D-S,
Zhang X-P, Huang G-B, editors. Adv. Intell.
Comput. Int. Conf. Intell. Comput. ICIC 2005
Hefei China August 23-26 2005 Proc. Part I,
Berlin, Heidelberg: Springer Berlin Heidelberg;
2005.p. 878–87. doi:10.1007/11538059_91.

[8] Bunkhumpornpat C, Sinapiromsaran K, Lursinsap
C. Safe-Level-SMOTE: Safe-Level-Synthetic
Minority Over-Sampling Technique for handling
the class imbalanced problem. In: Theeramunkong
T, Kijsirikul B, Cercone N, Ho T-B, editors. Adv.
Knowl. Discov. Data Min., vol. 5476, Springer
Berlin Heidelberg; 2009.p. 475–82.

[9] He H, Bai Y, Garcia EA, Li S. ADASYN:
Adaptive synthetic sampling approach for
imbalanced learning. Neural Netw. 2008 IJCNN
2008 IEEE World Congr. Comput. Intell. IEEE
Int. Jt. Conf. On, 2008. p. 1322–8.

[10] Barua S, Islam MM, Yao X, Murase K.
MWMOTE–majority weighted minority
oversampling technique for imbalanced data set
learning. IEEE Trans Knowl Data Eng
2014;26:405–425.

[11] Marcellin S, Zighed DA, Ritschard G. An
asymmetric entropy measure for decision trees
2006.p. 1292–9.

[12] Lenca P, Lallich S, Vaillant B. Construction of
an Off-Centered entropy for the supervised
learning of imbalanced classes: Some First Results.
Commun Stat - Theory Methods 2010;39:493–507.

[13] Sun Y, Kamel MS, Wong AK, Wang Y. Cost-
sensitive boosting for classification of imbalanced
data. Pattern Recognit 2007;40:3358–3378.

[14] Del Río S, López V, Benítez JM, Herrera F. On the
use of MapReduce for imbalanced big data using
Random Forest. Inf Sci 2014;285: 112–137.

http://spark/

 36 Vol. 13 No. 2 March – April 2018

[15] Lyubimov D, Palumbo A. Apache Mahout:
Beyond MapReduce. CreateSpace Independent
Publishing Platform; 2016.

[16] Triguero I, del Río S, López V, Bacardit J,
Benítez JM, Herrera F. ROSEFW-RF: The
winner algorithm for the ECBDL’14 big data
competition: an extremely imbalanced big data
bioinformatics problem. Knowl-Based Syst
2015;87:69–79.

[17] García S, Herrera F. Evolutionary undersampling
for classification with imbalanced datasets:
Proposals and taxonomy. Evol Comput
2009;17:275–306.

[18] UniNet. Off Inf Technol Adm Educ Dev 2017.
http://www.uni.net.th/.

[19] CLOUD DATAPROC. Cloud Datapro - Cloud-
Native Hadoop Spark 2017. https://cloud.google.
com/dataproc/.

